Skip to main content
Log in

Symmetry classification of quasi-linear PDE’s containing arbitrary functions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the problem of performing the preliminary “symmetry classification” of a class of quasi-linear PDE’s containing one or more arbitrary functions: we provide an easy condition involving these functions in order that nontrivial Lie point symmetries be admitted, and a “geometrical” characterization of the relevant system of equations determining these symmetries. Two detailed examples will elucidate the idea and the procedure: the first one concerns a nonlinear Laplace-type equation, the second a generalization of an equation (the Grad–Schlüter–Shafranov equation) which is used in magnetohydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ovsjannikov, L.V.: Group Properties of Differential Equations, Siberian Academy of Sciences, Novosibirsk, 1962 and Group Analysis of Differential Equations. Academic Press, New York (1982)

    Google Scholar 

  2. Olver, P.J.: Application of Lie Groups to Differential Equations. Springer, Berlin (1986) (Second Edition, 1993)

    Google Scholar 

  3. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, Berlin (1989)

    MATH  Google Scholar 

  4. Stephani, H.: Differential Equations. Their Solution Using Symmetries. Cambridge University Press, Cambridge, UK (1989)

    MATH  Google Scholar 

  5. Gaeta, G.: Nonlinear Symmetries and Nonlinear Equations. Kluwer, Dordrecht (1994)

    MATH  Google Scholar 

  6. Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol 3. CRC Press, Boca Raton (1995)

    Google Scholar 

  7. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  8. Champagne, B., Hereman, W., Winternitz, P.: The computer calculation of Lie point symmetries of large systems of differential Equations. Comput. Phys. Comm. 66, 319–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hereman, W.: Review of symbolic software for Lie symmetry analysis. Math. Comp. Model. 25, 115–132 (1997), (see also 6, Vol. 3, Chapter 13)

    Article  MATH  MathSciNet  Google Scholar 

  10. Baumann, G.: Symmetry Analysis of Differential Equations with Mathematica. Springer, Berlin (2000)

    MATH  Google Scholar 

  11. Popovych, R.O., Yehorchenko, I.A.: Group classification of generalised eikonal equations. Ukr. Math. J. 53, 1841–1850 (2001)

    Article  Google Scholar 

  12. Nikitin, A.G., Popovych, R.O.: Group classification of nonlinear Schrödinger equations. Ukr. Math. J. 53, 1255–1265 (2001)

    Article  MathSciNet  Google Scholar 

  13. Güngör, F., Lahno, V.I., Zhdanov, R.Z.: Symmetry classification of KdV-type nonlinear evolution equations. J. Math. Phys. 45, 2280–2313 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Popovych, R.O., Ivanova, N.M.: New results on group classification of nonlinear diffusion-convection equations. J. Phys. A: Math. Gen. 37, 7547–7565 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhdanov, R.Z., Lahno, V.I.: Group classification of the gen-eral evolution equation: Local and quasilocal symmetries. In: Symmetry, Integrability and Geometry: Methods and Appli-cations (SIGMA) Vol. 1, Paper 009 (2005)

  16. Wesson, J.: Tokamaks, The Oxford Engineering Series 48, 2nd ed. Oxford, Clarendon (1997)

  17. Ibragimov, N.H.: On the group classification of differential equations of the second order. Sov. Math. Dokl. 9, 1365–1368 (1968)

    MATH  Google Scholar 

  18. Fushchych, W.I., Serov, N.I.: The symmetry and some exact solutions of the nonlinear many-dimensional Liouville, d'Alembert and eikonal equations. J. Phys. A: Math. Gen. 16, 3645–3658 (1983)

    Article  Google Scholar 

  19. Pucci, E., Salvatori, M.C.: Group properties of a class of semilinear hyperbolic equations. Int. J. Non-Linear Mech. 21, 147–155 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gusyatnikova, V.N., Samokhin, A.V., Titov, S.V., Vinogradov, A.M., Yamaguzhin, V.A.: Symmetries and conservation laws of Kadomtsev–Pogutse equations. Acta Appl. Math. 15, 23–64 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crowdy, D.G.: General solutions to the 2D Liouville equation. Int. J. Eng. Sci. 35, 141–149 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kiselev, A.V.: On the geometry of the Liouville equation: Symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math. 72, 33–49 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Brito, F., Leite, M.L.: Souza-Neto, V.: Liouville formula under the viewpoint of minimal surfaces. Comm. Pure Appl. Anal. 3, 41–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cicogna, G., Ceccherini, F., Pegoraro, F.: Applications of symmetry methods to the theory of plasma physics. In: Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2, Paper 017 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampaolo Cicogna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cicogna, G. Symmetry classification of quasi-linear PDE’s containing arbitrary functions. Nonlinear Dyn 51, 309–316 (2008). https://doi.org/10.1007/s11071-007-9212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9212-7

Keywords

Navigation