Skip to main content
Log in

Modelling heavy tails and asymmetry using ARCH-type models with stable Paretian distributions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Several approaches have been considered to model the heavy tails and asymmetric effect on stocks returns volatility. The most commonly used models are the Exponential Generalized AutoRegressive Conditional Heteroskedasticity (EGARCH), the Threshold GARCH (TGARCH), and the Asymmetric Power ARCH (APARCH) which, in their original form, assume a Gaussian distribution for the innovations. In this paper we propose the estimation of all these asymmetric models on empirical distributions of the Standard & Poor’s (S&P) 500 and the Financial Times Stock Exchange (FTSE) 100 daily returns, assuming the Student’s t and the stable Paretian with (α < 2) distributions for innovations. To the authors’ best knowledge, analysis of the EGARCH and TGARCH assuming innovations with α-stable distribution have not yet been reported in the literature. The results suggest that this kind of distributions clearly outperforms the Gaussian case. However, when α-stable and Student’s t distributions are compared, a general conclusion should be avoided as the goodness-of-fit measures favor the α-stable distribution in the case of S&P 500 returns and the Student’s t distribution in the case of FTSE 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baillie, R., Bollerslev, T.: Intra-day and inter-market volatility in foreign exchange rates. Rev. Econ. Stud. 45, 745–762 (1989)

    Google Scholar 

  2. Bidarkota P., McCulloch, J.: Testing for persistence in stock returns with GARCH-stable shocks. Quant. Finance 4, 256–265 (2004)

    Article  MathSciNet  Google Scholar 

  3. Black, F.: Studies of stock price volatility changes. In: Proceedings of the 1976 Meetings of the Business and Economics Statistics Section, pp. 177–181. American Statistical Association (1976)

  4. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307–327 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bollerslev, T.: A conditional heteroskedastic time series model for speculative prices and rates of return. Rev. Econ. Stat. 69, 542–547 (1987)

    Article  Google Scholar 

  6. Bollerslev, T., Chou, R., Kroner, K.: Arch modelling in finance. J. Econometrics 52, 5–59 (1992)

    Article  Google Scholar 

  7. Bollerslev, T., Engle, R., Nelson, D.: ARCH models. In: Handbook of Econometrics, Engle, R., McFadden, D. (eds.), vol. 4. North-Holland, Amsterdam (1994)

    Google Scholar 

  8. Bond, S.: A review of asymmetric conditional density functions in autoregressive conditional heteroskedasticity models. In: Distributional Modelling in Finance. Knight, J., Satchell, S. (eds.), Butterworth and Heinemann, Oxford (2000)

    Google Scholar 

  9. Curto, J., Reis, E., Esperança, J.: Stable Paretian distributions: and unconditional model for PSI20, DAX and DJIA indexes. Rev. Finan. Markets 5(1), 5–17 (2003)

    Google Scholar 

  10. Dickey, D., Fuller, W.: Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49(4), 1057–1072 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ding, Z., Granger, C., Engle, R.: A long memory property of stock market returns and a new model. J. Empir. Finance 1, 83–106 (1993)

    Article  Google Scholar 

  12. Engle, R.: Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4), 987–1006 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fama, E.: The behavior of stock prices. J. Bus. 38, 34–105 (1965)

    Article  Google Scholar 

  14. Fama, E.F.: Foundations of Finance: Portfolio Decision and Secuity Prices. Basic Books, New York (1976)

    Google Scholar 

  15. Fernandez, C., Steel, M.: On Bayesian modelling of fat tails and skewness. J. Am. Stat. Assoc. 93, 359–371 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Granger, C., Ding, Z.: Some properties of absolute returns: an alternative measure of risk. Annales d'Économie et de Statistique 40, 67–91 (1995)

    MathSciNet  Google Scholar 

  17. Hansen, P., Lunde, A.: A forecast comparison of volatility models: does anything beat a GARCH(1,1). J. Appl. Econ. 20, 873–889 (2005)

    Article  MathSciNet  Google Scholar 

  18. Hamao, Y., Masulis, R., Ng, V.: Correlations in price changes and volatility across international stock markets. Rev. Finan. Stud. 3, 281–307 (1990)

    Article  Google Scholar 

  19. Hsieh, D.: Modelling heteroskedasticity in daily foreign-exchange rates. J. Bus. Econ. Stat. 7, 307–317 (1989a)

    Article  Google Scholar 

  20. Hsieh, D.: Testing nonlinear dependence in daily foreign exchange rates. J. Bus. 62, 339–368 (1989b)

    Article  Google Scholar 

  21. Kwiatkowski, D., Phillips, P., Schmidt, P., Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root? J. Econometrics 54, 159–178 (1992)

    Article  MATH  Google Scholar 

  22. Köechler, U., Neumann, K., Sørensen, M., Streller, A.: Stock returns and hyperbolic distributions. Math. Comput. Model. 29, 1–15 (1999)

    Article  Google Scholar 

  23. Liu, S., Brorsen, B.: Maximum likelihood estimation of a GARCH-stable model. J. Appl. Econometrics 10, 273–285 (1995)

    Article  Google Scholar 

  24. Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)

    Article  Google Scholar 

  25. McDonald, J., Newey, W.: Partially adaptive estimation of regression models via the generalized t distribution. Econometric Theory 4, 428–457 (1988)

    MathSciNet  Google Scholar 

  26. McDonald, J., Xu, Y.: A generalization of the beta distribution with applications. J. Econometrics 66, 133–152 (1995)

    Article  MATH  Google Scholar 

  27. Mittnik, S., Rachev, S.: Modelling asset returns with alternative stable models. Econometric Rev. 12, 261–330 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mittnik, S., Paolella, M., Rachev, S.: Unconditional and conditional distributional models for the Nikkei Index. Asia-Pacific Finan. Markets 5, 99–128 (1998)

    Article  Google Scholar 

  29. Mittnik, S., Rachev, S., Doganoglu, T., Chenyao, D.: Maximum likelihood estimation of stable Paretian models. Math. Comput. Model. 29, 275–293 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mittnik, S., Paoelella, M.: Prediction of financial downside risk with heavy-tailed conditional distributions. In: Handbook of Heavy Tailed Distributions in Finance, vol. 1, chapter 9. Elsevier, North-Holland, Amsterdam (2003)

    Google Scholar 

  31. Nelson, D.: Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59(2), 347–370 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nelson, D., Cao, C.: Inequality constraints in the univariate GARCH model. J. Bus. Econ. Stat. 10, 229–235 (1993)

    Article  Google Scholar 

  33. Panorska, A., Mittnik, S., Rachev, S.: Stable ARCH models for financial time series. Appl. Math. Lett. 8, 33–37 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Paolella, M.: Testing the stable Paretian assumption. Math. Comput. Model. 34, 1095–1112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Taylor, S.: Modelling Financial Time Series. Wiley, New York (1986)

    Google Scholar 

  36. Zakoian, J.-M.: Threshold heteroskedastic models. J. Econ. Dyn. Control 18(5), 931–955 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Dias Curto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavares, A.B., Curto, J.D. & Tavares, G.N. Modelling heavy tails and asymmetry using ARCH-type models with stable Paretian distributions. Nonlinear Dyn 51, 231–243 (2008). https://doi.org/10.1007/s11071-007-9206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9206-5

Keywords

Navigation