Skip to main content
Log in

Asymptotic approximation of an ionic model for cardiac restitution

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Cardiac restitution has been described both in terms of ionic models – systems of ODE's – and in terms of mapping models. While the former provide a more fundamental description, the latter are more flexible in trying to fit experimental data. Recently, we proposed a two-dimensional mapping that accurately reproduces restitution behavior of a paced cardiac patch, including rate dependence and accommodation. By contrast, with previous models only a qualitative, not a quantitative, fit had been possible. In this paper, a theoretical foundation for the new mapping is established by deriving it as an asymptotic limit of an idealized ionic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banville, I., Gray, R.A.: Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. J. Cardiovasc. Electrophysiol. 13, 1141–1149 (2002)

    Article  Google Scholar 

  2. Cherry, E.M., Fenton, F.H.: Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects. Am. J. Physiol. 286, H2332–H2341 (2004)

    Google Scholar 

  3. Cain, J.W., Schaeffer, D.G.: Two-term asymptotic approximation of a cardiac restitution curve. SIAM Rev. 48, 537–546 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chialvo, D.R., Michaels, D.C., Jalife, J.: Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Circ. Res. 66, 525–545 (1990)

    Google Scholar 

  5. di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Bifurcation and Chaos in Piecewise-smooth Dynamical Systems: Theory and Applications. Springer-Verlag, Berlin (in process)

  6. Elharrar, V., Surawicz, B.: Cycle length effect on restitution of action potential duration in dog cardiac fibers. Am. J. Physiol. 244, H782–H792 (1983)

    Google Scholar 

  7. Foale, S., Bishop, R.: Bifurcations in impacting systems. Nonlinear Dyn. 6, 285–299 (1994)

    Article  Google Scholar 

  8. Fox, J.J., McHarg, J.L., Gilmour, R.F., Jr.: Ionic mechanism of electrical alternans. Am J. Physiol. 282, H516–H530 (2002)

    Google Scholar 

  9. Fox, J.J., Bodenschatz, E., Gilmour, R.F., Jr.: Period-doubling instability and memory in cardiac tissue. Phys. Rev. Lett. 89, 138101-1–138101-4 (2002)

    Google Scholar 

  10. Hall, G.M., Bahar, S., Gauthier, D.J.: Prevalence of rate-dependent behaviors in cardiac muscle. Phys. Rev. Lett. 82, 2995–2998 (1999)

    Article  Google Scholar 

  11. Kalb, S.S., Dobrovolny, H.M., Tolkacheva, E.G., Idriss, S.F., Krassowska, W., Gauthier, D.J.: The restitution portrait: A new method for investigating rate-dependent restitution. J. Cardiovasc. Electrophysiol. 15, 698–709 (2004)

    Article  Google Scholar 

  12. Karma, A.: Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett. 71, 1103–1107 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Luo, C., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. Circ. Res. 74, 1071–1096 (1994)

    Google Scholar 

  14. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65, 767–793 (2003)

    Article  Google Scholar 

  15. Nolasco, J.B., Dahlen, R.W.: A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25, 191–196 (1968)

    Google Scholar 

  16. Nusse, H.E., Yorke, J.A.: Border-collision bifurcations including period two to period three for piecewise smooth systems. Physica D 57, 39–57 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schaeffer, D.G., Cain, J.W., Gauthier, D.J., Kalb, S.S., Oliver, R.A., Tolkacheva, E.G., Ying, W., Krassowska, W.: An ionically based mapping model with memory for cardiac restitution. Bull. Math. Biol. (to appear)

  18. Shiferaw, Y., Watanabe, M.A., Garfinkel, A., Weiss, J.N., Karma, A.: Model of intracellular calcium cycling in ventricular myocytes. Biophys. J. 85, 3666–3686 (2003)

    Article  Google Scholar 

  19. Zhao, X., Dankowicz, H., Reddy, C.K., Nayfeh, A.H.: Modeling and simulation methodology for impact microactuators. J. Micromech. Microeng. 14, 775–784 (2004)

    Article  Google Scholar 

  20. Zhao, X., Reddy, C.K., Nayfeh, A.H.: Nonlinear dynamics of an electrically driven impact microactuator. Nonlinear Dyn. 40, 227–239 (2005)

    Article  MATH  Google Scholar 

  21. Zhusubaliyev, Z.T., Mosekilde, E.: Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, Singapore (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Schaeffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeffer, D.G., Ying, W. & Zhao, X. Asymptotic approximation of an ionic model for cardiac restitution. Nonlinear Dyn 51, 189–198 (2008). https://doi.org/10.1007/s11071-007-9202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9202-9

Keywords

Navigation