Skip to main content
Log in

Asymptotic construction of nonlinear normal modes for continuous systems

  • Review Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper provides a review of some asymptotic methods for construction of nonlinear normal modes for continuous system (NNMCS). Asymptotic methods of solving problems relating to NNMCS have been developed by many authors. The main features of this paper are that (i) it is devoted to the basic principles of asymptotic approaches for constructing of NNMCS; (ii) it deals with both traditional approaches and, less widely used, new approaches; and (iii) it pays a lot of attention to the analysis of widely used simplified mechanical models for the analysis of NNMCS. The author has paid special attention to examples and discussion of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wah, T.: The normal modes of vibration of certain nonlinear continuous systems. Trans. ASME J. Appl. Mech. 31(1), 139–140 (1964)

    Google Scholar 

  2. Kauderer, H.: Nichtlineare Mechanik. Springer-Verlag, Berlin (1958)

    MATH  Google Scholar 

  3. Berger, H.M.: A new approach to the analysis of large deflections of plates. Trans. ASME J. Appl. Mech. 22(4), 465–472 (1955)

    MATH  Google Scholar 

  4. Andrianov, I.V.: On the theory of Berger plates. PMM J. Appl. Math. Mech. 47(1), 142–144 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Andrianov, I.V.: Construction of simplified equation of nonlinear dynamics of plates and shallow shells by the averaging method. PMM J. Appl. Math. Mech. 50(1), 126–129 (1986)

    Article  MATH  Google Scholar 

  6. Awrejcewicz, J., Andrianov, I.V., Manevitch, L.I.: Asymptotic Approaches in Nonlinear Dynamics: New Trends and Applications. Springer-Verlag, Heidelberg, Berlin (1998)

    MATH  Google Scholar 

  7. Andrianov, I.V., Awrejcewicz, J., Manevitch, L.I.: Asymptotical Mechanics of Thin-Walled Structures: A Handbook. Springer-Verlag, Berlin, Heidelberg (2004)

    Google Scholar 

  8. Vakakis, A.F.: Non-linear normal modes and their applications in vibration theory: an overview. Mech. Syst. Signal Proc. 11, 3–22 (1997)

    Article  Google Scholar 

  9. Vakakis, A.F., Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley Interscience, New York (1996)

    MATH  Google Scholar 

  10. Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational, and Experimental Methods.Wiley, New York (2000)

  11. Shaw, S.W., Pierre, C.: Normal modes of vibration for continuous systems. J. Sound Vib. 169(3), 319–347 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pilipchuk, V.N.: Principal trajectories of forced vibrations for discrete and continuous systems. Meccanica 35, 497–517 (2000)

    Article  MATH  Google Scholar 

  13. Bogoliubov, N.N., Mitropolsky, Yu.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon & Breach, New York (1961)

    Google Scholar 

  14. Andrianov, I.V., Awrejcewicz, J.: Applicability of the Kirchhoff approach to the theory of vibrations of rods. J. Sound Vib. 288(1–2), 395–398 (2005)

    Article  Google Scholar 

  15. Andrianov, I.V., Awrejcewicz, J.: On the improved Kirchhoff equation modelling nonlinear vibrations of beams. Acta Mechanica 186, 135–139 (2006)

    Google Scholar 

  16. Bolotin, V.V.: Random Vibrations of Elastic Systems. Martinus Nijhoff, de Hague, Boston (1984)

    MATH  Google Scholar 

  17. Andrianov, I.V., Kholod, E.G.: Intermediate asymptotics in the nonlinear dynamics of shells. Mech. Solids 28(2), 160–165 (1993)

    Google Scholar 

  18. Andrianov, I.V., Kholod, E.G.: Non-linear free vibration of shallow cylindrical shell by Bolotin's asymptotic method. J. Sound Vib. 160(1), 594–603 (1993)

    Google Scholar 

  19. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Noordhoff, Groningen (1958)

    MATH  Google Scholar 

  20. Andrianov, I.V., Krizhevskiy, G.A.: Investigation of natural oscillation of circle and sector plates with consideration of geometrical nonlinearity. Mech. Solids 26(2), 143–148 (1991)

    Google Scholar 

  21. Andrianov, I.V., Krizhevsky, G.A.: Free vibration analysis of rectangular plates with structural inhomogenity. J. Sound Vib. 162(2), 231–241 (1993)

    Article  MATH  Google Scholar 

  22. Pellicano, F., Vakakis, A.F.: Normal modes and boundary layers for a slender tensional beam on a nonlinear foundation. Nonlinear Dyn. 25(1–3), 79–93 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Szemplinska-Stupnicka, W.: “Non-linear normal modes” and the generalized Ritz method in the problems of vibrations of non-linear elastic continuous systems. Int. J. Non-Linear Mech. 18, 149–165 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  24. Szemplinska-Stupnicka, W.: The Behavior of Non-linear Vibrating Systems, vol. 2. Kluwer, Dordrecht (1990)

    Google Scholar 

  25. Lewandowsky, R.: Application of the Ritz method to the analysis of non-linear free vibrations of beams. J. Sound Vib. 114, 91–101 (1987)

    Google Scholar 

  26. Lewandowsky, R.: Solutions with bifurcation points for free vibrations of beams: an analytical approach. J. Sound Vib. 177, 239–249 (1994)

    Article  Google Scholar 

  27. Lewandowsky, R.: On beams, membranes and plates vibration backbone curves in cases of internal resonance. Meccanica 31, 323–346 (1996)

    Article  MathSciNet  Google Scholar 

  28. King, M.E., Vakakis, A.F.: An energy-based approach to computing resonant nonlinear normal modes. Trans. ASME J. Appl. Mech. 63, 810–819 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mikhlin, Yu.V., Morgunov, B.I.: Normal vibrations in near-conservative self-excited and viscoelastic nonlinear systems. Nonlinear Dyn. 25(1–3), 33–48 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Legrand, M., Jiang, D., Pierre, C., Shaw, S.W.: Nonlinear normal modes of a rotating shaft based on the invariant manifolds method. Int. J. Rotating Mach. 10, 1–17 (2004)

    Google Scholar 

  31. Pesheck, E., Pierre, C., Shaw, S.W.: Accurate reduced-order models for a simple rotor blade model using non-linear normal modes. Math. Comp. Model. 33, 1085–1097 (2001)

    Article  MATH  Google Scholar 

  32. Pesheck, E., Pierre, C., Shaw, S.W.: Modal reduction of a nonlinear rotating beam through non-linear normal modes. J. Vib. Acoust. 124, 229–236 (2002)

    Google Scholar 

  33. Soares, M.E.S., Mazzili, C.E.N.: Nonlinear normal modes of planar frames discretised by the finite element method. Comp. Struct. 77, 485–493 (2000)

    Article  Google Scholar 

  34. Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122, 21–30 (2000)

    Article  Google Scholar 

  35. Andrianov, I.V., Danishevs'kyy, V.V.: Asymptotic investigation of the nonlinear dynamic boundary value problem for rod. Technische Mechanik 15, 53–55 (1995)

    Google Scholar 

  36. Andrianov, I.V., Danishevs'kyy, V.V.: Asymptotic approach for nonlinear periodical vibrations of continuous structures. J. Sound Vib. 249(3), 465–481 (2002)

    Article  MathSciNet  Google Scholar 

  37. Andrianov, I.V., Awrejcewicz, J., Danishevs'kyy, V.V.: An artificial small perturbation parameter and nonlinear plate vibrations. J. Sound Vib. 283(3–5), 561–571 (2005)

    Article  Google Scholar 

  38. Andrianov, I.V., Awrejcewicz, J.: New trends in asymptotic approaches: summation and interpolation methods. Appl. Mech. Rev. 54(1), 69–92 (2001)

    Google Scholar 

  39. Andrianov, I.V., Awrejcewicz, J., Barantsev, R.G.: Asymptotic approaches in mechanics: new parameters and procedures. Appl. Mech. Rev. 56(1), 87–110 (2003)

    Article  Google Scholar 

  40. Andrianov, I., Awrejcewicz, J., Ivankov, A.: Artificial small parameter method —- solving of mixed boundary value problems. Math. Probl. Eng. 3, 325–340 (2005)

    Article  MathSciNet  Google Scholar 

  41. Marion, M., Temam, R.: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26(5), 1139–1157 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  42. Steindl, A., Troger, H.: Methods for dimension reduction and their application in nonlinear dynamics. Int. J. Solids Str. 38, 2131–2147 (2001)

    Article  MATH  Google Scholar 

  43. Garsia-Archilla, B., Novo, J., Titi, E.S.: Postprocessing the Galerkin methods: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35(3), 941–972 (1998)

    Article  MathSciNet  Google Scholar 

  44. Laing, C.R., McRobie, A., Thompson, J.M.T.: The post-processed Galerkin method applied to nonlinear shell vibrations. Dyn. Stab. Syst. 14(2), 163–181 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Jiang, D., Pierre, C., Shaw, S.W.: Large-amplitude non-linear normal modes of piecewise linear systems. J. Sound Vib. 272, 869–891 (2004)

    Article  MathSciNet  Google Scholar 

  46. Jiang, D., Pierre, C., Shaw, S.W.: Non-linear normal modes for vibratory systems under harmonic excitation. J. Sound Vib. 288, 791–812 (2005)

    Article  Google Scholar 

  47. Pesheck, E., Pierre, C., Shaw, S.W.: A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249(5), 971–993 (2002)

    Article  MathSciNet  Google Scholar 

  48. Liao, S.: Beyond Perturbation. Introduction to the Homotopy Analysis Method. Chapman&Hall/CRC Press, Boca Raton, FL (2004)

  49. Poincaré, H.: New Methods of Celestial Mechanics, vol. 1–3. American Institute of Physics, Woodbury, NY (1993)

    Google Scholar 

  50. Giacaglia, G.E.O.: Perturbation Methods in Non-linear Systems. Springer-Verlag, New York (1972)

    MATH  Google Scholar 

  51. Dorodnitzyn, A.A.: Using of small parameter method for numerical solution of mathematical physics equations. Numerical Methods for Solving of Continuum Mechanics Problems, VZ AN SSSR, Moscow, 85–101 (1969) (in Russian)

    Google Scholar 

  52. Bender, C.M., Milton, K.M., Pinsky, S.S., Simmonds, L.M. Jr.: Nonperturbative approach to nonlinear problems. J. Math. Phys. 30(7), 1447–1445 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  53. Bender, C.M., Boettcher, S., Milton, K.A.: A new perturbative approach to nonlinear partial differential equations. J. Math. Phys. 32(11), 3031–3038 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  54. Andrianov, I.V., Awrejcewicz, J.: Construction of periodic solutions to partial differential equations with non-linear boundary conditions. Int. J. Nonlinear Sci. Num. Simul. 1(4), 237–332 (2000)

    MathSciNet  Google Scholar 

  55. Nayfeh, A.H., Asfar, K.R.: Response of a bar constrained by a non-linear spring to a harmonic excitation. J. Sound Vib. 105, 1–15 (1986)

    Article  MATH  Google Scholar 

  56. Lee, W.K., Yeo, M.H.: Two-mode interaction of a beam with nonlinear boundary conditions. J. Vib. Acoust. 121, 84–88 (1999)

    Google Scholar 

  57. Afaneh, A.A., Ibrahim, R.A.: Nonlinear response of initially buckled beam with 1:1 internal resonance to sinusoidal excitation. Nonlinear Dyn. 4, 547–571 (1993)

    Article  Google Scholar 

  58. Nayfeh, A.H., Kreider, W., Anderson, T.J.: Investigation of natural frequencies and mode shapes of buckled beams. AIAA J. 33(6), 1121–1126 (1995)

    Article  MATH  Google Scholar 

  59. Lacarbonara, W., Nayfeh, A.H., Kreider, W.: Experimental validation of reduction methods for nonlinear vibrations of distributed-parameter systems: analysis of a buckled beam. Nonlinear Dyn. 17, 95–117 (1998)

    Article  MATH  Google Scholar 

  60. Nayfeh, A.H., Lacarbonara, W., Chin, Ch.-M.: Nonlinear normal modes of buckling beams: three-to-one and one-to-one internal resonances. Nonlinear Dyn. 18, 253–273 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  61. Boertjens, G.J., van Horssen, W.T.: On interactions of oscillation modes for a weakly non-linear undamped elastic beam with an external force. J. Sound Vib. 235, 201–217 (2000)

    Article  Google Scholar 

  62. Verhulst, F.: Methods and Applications of Singular Perturbations. Boundary Layers and Multiple Timescale Dynamics. Springer-Verlag, Berlin (2005)

    Google Scholar 

  63. Boertjens, G.J., van Horssen, W.T.: On mode interactions for a weakly nonlinear beam equation. Nonlinear Dyn. 17(1), 23–40 (1998)

    Article  MATH  Google Scholar 

  64. Boertjens, G.J., van Horssen W.T.: An asymptotic theory for a weakly nonlinear beam equation with a quadratic perturbation. SIAM J. Appl. Math. 60, 602–632 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  65. Darmawijoyo, van Horssen, W.T.: On boundary damping for a weakly nonlinear wave equation. Nonlinear Dyn. 30(2), 179–191 (2002)

    Article  MATH  Google Scholar 

  66. Suweken, G., van Horssen, W.T.: On the weakly nonlinear transversal vibrations of a conveyor belt with a low and time-varying velocity. Nonlinear Dyn. 31(2), 197–203 (2003)

    Article  MATH  Google Scholar 

  67. Zarubinskaya, M.A., van Horssen, W.T.: On the vibrations of a simply supported square plate on a weakly nonlinear elastic foundation. Nonlinear Dyn. 40(1), 35–60 (2005)

    Article  MATH  Google Scholar 

  68. Zarubinskaya, M.A., van Horssen, W.T.: On aspects of asymptotics for plate equation. Nonlinear Dyn. 41(4), 403–413 (2005)

    Article  MATH  Google Scholar 

  69. Lacarbonara, W.: Direct treatment and discretizations of non-linear spatially continuous systems. J. Sound Vib. 221, 849–866 (1999)

    Article  MathSciNet  Google Scholar 

  70. Lacarbonara, W., Camillacci, R.: Nonlinear normal modes of structural systems via asymptotic approach. Int. J. Solids Struct. 41, 5565–5594 (2004)

    Article  MATH  Google Scholar 

  71. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Non-Linear Mech. 38, 851–872 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  72. Lacarbonara, W., Rega, G.: Resonant non-linear normal modes. Part II: activation/orthogonality conditions for shallow structural systems. Int. J. Non-Linear Mech. 38, 873–887 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  73. Nayfeh, A.H., Nayfeh, S.A.: On nonlinear modes of continuous systems. J. Vib. Acoust. 117, 199–205 (1995)

    Google Scholar 

  74. Nayfeh, A.H., Nayfeh, S.A.: Nonlinear normal modes of a continuous system with quadratic nonlinearities. J. Vib. Acoust. 116, 129–136 (1994)

    Article  Google Scholar 

  75. Pak, C., Rand, R.H., Moon, F.C.: Free vibrations of a thin elastica by normal modes. Nonlinear Dyn. 3, 347–364 (1992)

    Article  Google Scholar 

  76. Rega, G.: Nonlinear vibrations of suspended cables. Part I: Modeling and analysis. Appl. Mech. Rev. 57(6), 443–478 (2004)

    Article  Google Scholar 

  77. Rega, G.: Nonlinear vibrations of suspended cables. Part II: Deterministic phenomena. Appl. Mech. Rev. 57(6), 479–514 (2004)

    Article  Google Scholar 

  78. Yabuno, H., Nayfeh, A.H.: Nonlinear normal modes of a parametrically excited cantilever beam. Nonlinear Dyn. 25(1–3), 65–77 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  79. Maccari, A.: The asymptotic perturbation method for nonlinear continuous systems. Nonlinear Dyn. 19, 1–18 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  80. Cochelin, B., Damil, N., Potier-Ferry, M.: Asymptotic-numerical methods and Padé approximants for nonlinear elastic structures. Int. J. Num. Meth. Eng. 37(7), 1187–1213 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  81. Azrar, L., Benamar, R., Potier-Ferry, M.: An asymptotic-numerical method for large-amplitude free vibrations of thin elastic plates. J. Sound Vib. 220(4), 695–727 (1999)

    Article  Google Scholar 

  82. Elhage-Hussein, A., Potier-Ferry, M., Damil, N.: A numerical continuation method based on Padé approximants. Int. J. Solids Str. 37, 6981–7001 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  83. Mokhtari, R.El., Cadou, J.-M., Potier-Ferry, M.: A two grid algorithm based on perturbation and homotopy method. C.R. Mech. 330, 825–830 (2002)

    Article  MATH  Google Scholar 

  84. Azrar, L., Boutyour, E.H., Potier-Ferry, M.: Non-linear forced vibrations of plates by an asymptotic-numerical method. J. Sound Vib. 252(4), 657–674 (2002)

    Article  Google Scholar 

  85. Touzé, C., Thomas, O., Chaigne, A.: Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. J. Sound Vib. 273, 77–101 (2004)

    Article  Google Scholar 

  86. Touzé, C., Thomas, O., Huberdeau, A.: Asymptotic non-linear normal modes for large-amplitude vibrations of continuous structures. Comp. Struct. 82, 2671–2682 (2004)

    Article  Google Scholar 

  87. Pilipchuk, V.N.: Method of investigation of nonlinear dynamics problems of rectangular plates with initial imperfections. Soviet Appl. Mech. 22, 162–168 (1986)

    Article  MATH  Google Scholar 

  88. Pilipchuk, V.N., Ibrahim, R.A.: Non-linear model interactions in shallow suspended cables. J. Sound Vib. 227(1), 1–28 (1999)

    Article  Google Scholar 

  89. Burton, T.D., Hamdan, M.N.: On the calculation of non-linear normal modes in continuous systems. J. Sound Vib. 197(1), 117–130 (1996)

    Article  Google Scholar 

  90. Handy, C.R.: Harmonic balance method and the theory of generalized Padé approximants. J. Sound Vib. 102(2), 247–257 (1985)

    Article  MathSciNet  Google Scholar 

  91. Mickens, R.E. A generalization of the method of harmonic balance. J. Sound Vib. 111, 515–518 (1986)

    Article  MathSciNet  Google Scholar 

  92. Suweken, G., van Horssen, W.T.: On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part I: the string-like case. J. Sound Vib. 264(1), 117–133 (2003)

    Article  Google Scholar 

  93. Nayfeh, A.H., Nayfeh, J.F., Mook, D.T.: On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 3, 145–162 (1992)

    Article  Google Scholar 

  94. Nayfeh, A.H.: On direct methods for constructing nonlinear normal modes of continuous systems. J. Vib. Control 1, 389–430 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  95. Pakdemirli, M., Nayfeh, S.A., Nayfeh, A.H.: Analysis of one-to-one autoparametric resonances in cables. Discretization vs. direct treatment. Nonlinear Dyn. 8, 65–83 (1995)

    MathSciNet  Google Scholar 

  96. Nayfeh, A.H., Lacarbonara, W.: On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 13, 203–220 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  97. Nayfeh, A.H.: Reduced-order models of weakly nonlinear spatially continuous systems. Nonlinear Dyn. 16, 105–125 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  98. Miller, W.Jr.: Symmetry and Separation of Variables. Addison-Wesley, Providence, Rhode Island (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Andrianov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianov, I.V. Asymptotic construction of nonlinear normal modes for continuous systems. Nonlinear Dyn 51, 99–109 (2008). https://doi.org/10.1007/s11071-006-9195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9195-9

Keywords

Navigation