Skip to main content
Log in

Modeling of hard disk drives for shock and vibration analysis – consideration of nonlinearities and discontinuities

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper reviews recent advances (mostly after year 2000) in shock and vibration analysis of hard disk drives (HDD) considering the presence of nonlinearities and discontinuities. Components and dynamic phenomena in HDD where effects of mechanical nonlinearity and discontinuities are significant are discussed, e.g., head actuator suspension, dimple and slider, head–disk interface, fluid dynamic bearing, spinning disks, and load/unload dynamics. Ways to model these nonlinearities and discontinuities are reviewed in detail. Our research on modeling an entire HDD in operating mode subject to shock and vibration using a flexible multibody dynamics formulation is also presented. The numerical simulation of the shock response of a 1-in. form factor HDD is presented. A half-sinusoidal acceleration shock is applied at the base of the HDD. Response of the flying height for different shock amplitudes and duration times is simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CSS:

Contact start/stop

DLC:

Diamond-like carbon

DOF:

Degree of freedom

FDB:

Fluid-dynamic bearing

FE:

Finite element

FH:

Flying height

HDD:

Hard disk drives

HDI:

Head–disk interface

HGA:

Head gimbal assembly

IMF:

Intermolecular forces

L/UL:

Load/Unload

LEC:

Leading edge center

PC:

Personal computer

TEC:

Trailing edge center

VCM:

Voice coil motor

References

  1. Liu, B.: Advance technology for ultra low flying height head disk interface. In: Data Storage Institute Workshop on Head Disk Interface, DSI, Singapore (2005)

  2. Liu, B., Zhang, M., Li, H.: Head—disk interface towards tb/in.2. In: Proceedings of the 6th International Symposium on Physics of Magnetic Materials, p. 2E-2, Singapore (2005)

  3. Thornton, B.H., Bogy, D.B.: Nonlinear aspects of air-bearing modeling and dynamic spacing modulation in sub-5-nm air bearings for hard disk drives. IEEE Trans. Magn. 39, 722–728 (2003)

    Article  Google Scholar 

  4. ANSYS, Ansys help. In: ANSYS ANSYS I, ANSYS, Inc., US edn. (2000)

  5. Jayson, E.M., Murphy, J., Smith, P.W., Talke, F.E.: Effects of air bearing stiffness on a hard disk drive subject to shock and vibration, ASME J. Tribol. Trans. 125, 343–349 (2003)

    Article  Google Scholar 

  6. Fukui, S., Kaneko, R.: Analysis of ultra-thin gas film lubrication based on linearized boltzmann equation: First report — derivation of a generalized lubrication equation including thermal creep flow. ASME J. Tribol. Trans. 110, 253–262 (1988)

    Article  Google Scholar 

  7. Fukui, S., Kaneko, R.: Analysis of flying characteristics of magnetic heads with ultra-thin spacings based on the boltzmann equation. In: Proceedings of the 4th Joint Magnetism and Magnetic Materials— INTERMAG Conference [IEEE Transactions on Magnetics], Vancouver, BC, Canada, pp. 2751–2753, July 12–15 (1988)

  8. Bahukudumbi, P., Beskok, A.: A phenomenological lubrication model for the entire knudsen regime. J. Micromech. Microeng. 13, 873–884 (2003)

    Article  Google Scholar 

  9. Park, J.H., Beskok, A., Bahukudumbi, P.: A unified engineering model for steady and quasi-steady shear-driven gas microflows. Microscale Thermophys. Eng. 7, 291–315 (2003)

    Article  Google Scholar 

  10. Kang, S.-C., Crone, R.M., Jhon, M.S.: A new molecular gas lubrication theory suitable for head–disk interface modeling. In: Proceedings of the 43rd Annual Conference on Magnetism and Magnetic Materials [J. Appl. Phys.] Miami, FL, USA AIP, pp. 5594–5596, November 9–12 (1999)

  11. Panzer, M.: Numerical Investigation of the Contact Force in the Head/disk Interface. Centre for Magnetic Recording Research, CA (2001)

    Google Scholar 

  12. Thornton, B.H., Bogy, D.B.: A parametric study of head—disk interface instability due to intermolecular forces. IEEE Trans. Magn. 40, 337–344 (2004)

    Article  Google Scholar 

  13. Gupta V., Bogy D.B.: Dynamics of sub-5-nm air-bearing sliders in the presence of electrostatic and intermolecular forces at the head—disk interface. IEEE Trans. Magn. 41, 610–615 (2005)

    Article  Google Scholar 

  14. Ambekar, R., Gupta, V., Bogy, D.B., Floyd, Jr.W.S.: Experimental and numerical investigation of dynamic instability in the head disk interface at proximity. In: Proceedings of the 2004 ASME/STLE International Joint Tribology Conference, Oct 24–27, 2004. Long Beach, CA, New York, pp. 1463–1470 BN–0791841812 (2004)

  15. Shen, I.Y.: Recent vibration issues in computer hard disk drives. J. Magn. Magn. Mater. 209, 6–9 (2000)

    Article  Google Scholar 

  16. Yoon, J., Shen, I.Y.: A numerical study on rotating-shaft spindles with nonlinear fluid-dynamic bearings. IEEE Trans. Magn. 41, 756–762 (2005)

    Article  Google Scholar 

  17. Tseng, C.-W., Shen, J.-Y., Shen, I.Y.: Vibration of rotating-shaft HDD spindle motors with flexible stationary parts. IEEE Trans. Magn. 39, 794–799 (2003)

    Article  Google Scholar 

  18. Jang, G.H., Lee, S.H., Jung, M.S.: Free vibration analysis of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft using the finite element method and substructure synthesis. J. Sound Vib. 251, 59–78 (2002)

    Article  Google Scholar 

  19. Baddour, N., Zu, J.W.: Nonlinearly coupled in-plane and transverse vibrations of a spinning disk. Appl. Math. Model. 31, 54–77 (2007)

    Google Scholar 

  20. Tandon, N., Rao, V.V.P., Agrawal, V.P.: Vibration and noise analysis of computer hard disk drives. Measurement 39, 16–25 (2006)

    Article  Google Scholar 

  21. Naganathan, G., Ramadhyani, S., Bajaj, A.K.: Numerical simulations of flutter instability of a flexible disk rotating close to a rigid wall. J. Vib. Control 9, 95–118 (2003)

    Article  MATH  Google Scholar 

  22. Namcheol Kang, A.R.: Aeroelastic flutter mechanisms of a flexible disk rotating in an enclosed compressible fluid. ASME J. Appl. Mech. 71, 120–130 (2004)

    Article  MATH  Google Scholar 

  23. Kim, B.C., Raman, A., Mote, C.D. Jr.: Prediction of aeroelastic flutter in a hard disk drive. J. Sound Vib. 238, 309–325 (2000)

    Article  Google Scholar 

  24. Hansen, M.H., Raman, A., Mote, C.D., Jr.: Estimation of nonconservative aerodynamic pressure leading to flutter of spinning disks. J. Fluids Struct. 15, 39–57 (2001)

    Article  Google Scholar 

  25. Tatewaki, M., Tsuda, N., Maruyama, T.: An analysis of disk flutter in hard disk drives in aerodynamic simulations. IEEE Trans. Magn. 37, 842–846 (2001)

    Article  Google Scholar 

  26. Huang, X.Y., Wang, X., Yap, F.F.: Feedback control of rotating disk flutter in an enclosure. J. Fluids Struct. 19, 917–932 (2004)

    Article  Google Scholar 

  27. Zeng, Q.-H., Bogy, D.B.: Effects of certain design parameters on load/unload performance. IEEE Trans. Magn. 36, 140–147 (2000)

    Article  Google Scholar 

  28. Zeng, Q.-H., Chapin, M., Bogy, D.B.: Dynamics of the unload process for negative pressure sliders. IEEE Trans. Magn. 35, 916–920 (1999)

    Article  Google Scholar 

  29. Zeng, Q.-H., Bogy, D.B.: Effects of suspension limiters on the dynamic load/unload process: numerical simulation. IEEE Trans. Magn. 35, 2490–2492 (1999)

    Article  Google Scholar 

  30. Zeng, Q.-H., Bogy, D.B.: Slider air bearing designs for load/unload applications. IEEE Trans. Magn. 35, 746–751 (1999)

    Article  Google Scholar 

  31. Zeng, Q.H., Bogy, D.B.: A simplified 4-dof suspension model for dynamic load/unload simulation and its application. J. Tribol. 122, 274–279 (2000)

    Article  Google Scholar 

  32. Yonemura, S., Weissner, S., Zhou, L., Talke, F.E.: Investigation of disk damage caused during load/unload using a surface reflectance analyzer. Tribol. Int. 38, 81–87 (2005)

    Article  Google Scholar 

  33. Weissner, S., Zander, U., Talke, F.E.: A new finite-element based suspension model including displacement limiters for load/unload simulations. J. Tribol. 125, 162–167 (2003)

    Article  Google Scholar 

  34. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge, UK (1998)

    MATH  Google Scholar 

  35. Shu, D.W., Shi, B.J., Meng, H., Yap, F.F., Jiang, D.Z., Ng, Q.Y., Zambri, R., Lau, J.H.T.: The pulse width effect of single half-sine acceleration pulse on the peak response of an actuator arm of hard disk drive. Mater. Sci. Eng. A: Mech. Behav. Micro-Nano-Scale Syst. 423, 199–203 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fook Fah Yap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yap, F.F., Harmoko, H., Liu, M. et al. Modeling of hard disk drives for shock and vibration analysis – consideration of nonlinearities and discontinuities. Nonlinear Dyn 50, 717–731 (2007). https://doi.org/10.1007/s11071-006-9184-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9184-z

Keywords

Navigation