Skip to main content
Log in

A new locking-free shear deformable finite element based on absolute nodal coordinates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The absolute nodal coordinate formulation has been recently extended to shear deformable beam or plate elements. This has been accomplished, in practice, by parameterizing the complete volume of the elements instead of a line or surface in the element kinematics description. In the absolute nodal coordinate formulation, the position of any point of the element volume is defined employing independent slope coordinates. The use of a large number of slope coordinates leads to unusual kinematic features that must be accounted for in order to avoid the element locking. This study demonstrates that the shear deformable element based on the absolute nodal coordinate formulation suffers from curvature thickness locking and shear locking in addition to the previously reported Poisson’s locking. Due to the tendency of locking, the use of the absolute nodal coordinate formulation can lead to elements with weak performance. In order to eliminate locking problems, this study introduces a new absolute nodal coordinate-based finite element. The introduced element uses redefined polynomial expansion together with a reduced integration procedure. The performance of the introduced element is studied by means of certain dynamic problems. The element exhibits a competent convergence rate and it does not suffer from the previously mentioned locking effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

    Article  Google Scholar 

  2. Shabana, A.A., Hussien, H., Escalona, J.L.: Application of the absolute nodal coordinate formulation to large rotation and large deformation problems. ASME J. Mech. Des. 120, 188–195 (1998)

    Google Scholar 

  3. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)

    Article  Google Scholar 

  4. Omar, M., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  5. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. ASME J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  6. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. ASME J. Mech. Des. 123, 614–621 (2001)

    Article  Google Scholar 

  7. Shabana, A.A.: Finite element incremental approach and exact rigid body inertia. ASME J. Mech. Des. 118, 171–178 (1996)

    Google Scholar 

  8. Escalona, J.L., Hussien, H., Shabana, A.A.: Application of the absolute nodal coordinate formulation to multibody system dynamics. J. Sound Vib. 214, 833–851 (1998)

    Article  Google Scholar 

  9. Berzeri, M., Campanelli, M., Shabana, A.A.: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst. Dyn. 5, 21–54 (2001)

    Article  MATH  Google Scholar 

  10. Mikkola, A., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MATH  Google Scholar 

  11. Von Dombrowski, S.: Analysis of large flexible body deformation in multibody systems using absolute coordinates. Multibody Syst. Dyn. 8, 409–432 (2002)

    Article  MATH  Google Scholar 

  12. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

  13. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004)

    Article  MATH  Google Scholar 

  14. Sopanen, J.T., Mikkola, A.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1), 53–74 (2003)

    Article  MATH  Google Scholar 

  15. Kerkkänen, K.S., Sopanen, J.T., Mikkola, A.: A linear beam finite element based on the absolute nodal coordinate formulation. J. Mech. Des. 127, 621–630 (2005)

    Google Scholar 

  16. Dufva, K., Sopanen, J.T., Mikkola, A.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280, 719–738 (2005)

    Article  Google Scholar 

  17. Dufva, K., Sopanen, J.T., Mikkola A.: Three-dimensional beam element based on a cross-sectional coordinate system approach. Nonlinear Dyn. 43(4), 311–327 (2006)

    Google Scholar 

  18. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation. In: Proceedings of IDETC/CIE 2005, September 24–28, Long Beach, CA (2005)

  19. García-Vallejo, D., Valverde, J., Domínguez, J.: An internal damping model for the absolute nodal coordinate formulation. Nonlinear Dyn. 42(4), 347–369 (2005)

    Google Scholar 

  20. Sugiyama, H., Shabana, A.A.: Application of plasticity theory and absolute nodal coordinate formulation to flexible multibody system dynamics. J. Mech. Des. 126, 478–487 (2004)

    Article  Google Scholar 

  21. Sugiyama, H., Escalona, J., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31, 167–195 (2003)

    Article  MATH  Google Scholar 

  22. Shabana, A.A., Mikkola, A.: Use of the finite element absolute nodal coordinate formulation in modelling slope discontinuity. ASME J. Mech. Des. 125, 342–350 (2003)

    Article  Google Scholar 

  23. Seo, J., Suguyama, H., Shabana, A.A.: Modeling pantograph/catenary interactions for multibody railroad vehicle systems. In: Proceedings of the Multibody Dynamics 2005, ECCOMAS Thematic Conference, June 21–24, Madrid, Spain (2005)

  24. Kerkkänen, K., Garcia-Vallejo, D., Mikkola A.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43(3), 239–256 (2006)

    Google Scholar 

  25. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley, New York (2002)

    Google Scholar 

  26. ABAQUS Theory Manual. Hibbit, Karlsson and Sorensen, Providence, RI (2004)

  27. García-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect. Part 1: A correction in the floating frame of reference formulation. Proc. IMechE J. Multibody Dyn. 219, 187–202 (2005)

    Google Scholar 

  28. García-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect. Part 2: Non-linear elasticity. Proc. IMechE J. Multibody Dyn. 219, 203–211 (2005)

    Google Scholar 

  29. Simo, J.C., Vu-Quoc, L.: The role of non-linear theories in transient dynamic analysis of flexible structures. J. Sound Vib. 119(3), 487–508 (1987)

    Article  Google Scholar 

  30. Wu, S.C., Haug, J.: Geometric non-linear substructuring for dynamic of flexible mechanical systems. Int. J. Numer. Methods Eng. 26, 2211–2226 (1998)

    Article  Google Scholar 

  31. Mayo, J.M., García-Vallejo, D., Domínguez, J.: Study of the geometric stiffening effect: comparison of different formulations. Multibody Syst. Dyn. 11, 321–341 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel García-Vallejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Vallejo, D., Mikkola, A.M. & Escalona, J.L. A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn 50, 249–264 (2007). https://doi.org/10.1007/s11071-006-9155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9155-4

Keywords

Navigation