Skip to main content
Log in

On the Chaotic Instability of a Nonsliding Liquid-Filled Top with a Small Spheroidal Base via Melnikov-Holmes-Marsden Integrals

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaotic orientations of a top containing a fluid filled cavity are investigated analytically and numerically under small perturbations. The top spins and rolls in nonsliding contact with a rough horizontal plane and the fluid in the ellipsoidal shaped cavity is considered to be ideal and describable by finite degrees of freedom. A Hamiltonian structure is established to facilitate the application of Melnikov-Holmes-Marsden (MHM) integrals. In particular, chaotic motion of the liquid-filled top is identified to be arisen from the transversal intersections between the stable and unstable manifolds of an approximated, disturbed flow of the liquid-filled top via the MHM integrals. The developed analytical criteria are crosschecked with numerical simulations via the 4th Runge-Kutta algorithms with adaptive time steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Routh, E. J., A Treatise on the Dynamics of a System of Rigid Bodies, Part 2: The Advanced Part, Sixth Edition, Macmillan, London 1905, pp. 186–202.

  2. Gray, A., A Treatise on Gyrostatics and Rotational Motion: Theory and Applications, Dover New York, 1959.

    Google Scholar 

  3. Kane, T. R. and Levison, D. A., ‘Realistic solution of the symmetric top problem’, Journal of Applied Mechanics 45, 1978, 903–909.

    Google Scholar 

  4. Kane, T. R. and Levison, D. A., ‘Realistic mathematical modeling of the rattleback,’ International Journal of Non-Linear Mechanics 17, 1982, 175–186.

    Article  MATH  ADS  Google Scholar 

  5. Kozlov, V. V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Springer, Berlin; Hong Kong, 1996.

    MATH  Google Scholar 

  6. Gray, C. G. and Nickel, B. G., ‘Constants of the motion for nonslipping tippe tops and other tops with round pegs,’ American Journal of Physics. 68, 2000, 821–828, and references therein.

    Google Scholar 

  7. Borisov, A. V. and Mamaev, I. S., ‘Chaplyginapos; ball rolling problem is Hamiltonian,’ Mathematical Notes 70, 2001, 720–723.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chaplygin, S. A., ‘On a motion of a heavy body of revolution on a horizontal plane,’ Regular and Chaotic Dynamics 7, 2002, 119–130; Chaplygin, S. A. ‘Collection of works,’ 1, 1948, 51–75.

  9. Chaplygin, S. A., ‘On a ballapos; rolling on a horizontal plane,’ Regular and Chaotic Dynamics 7, 2002, 131–148; Chaplygin, S. A. ‘Collection of works,’ 1, 1948, 76–101.

  10. Karapetyan, A. V. and Prokomina, O.V., ‘The stability of permanent rotations of a top with a cavity filled with liquid on a plane with friction,’ Journal of Applied Mathematics and Mechanics. 64, 2000,81–86.

    Article  MATH  MathSciNet  Google Scholar 

  11. Rudenko, T. V., ‘The stability of the steady motion of a gyrostat with a liquid in a cavity,’ Journal of Applied Mathematics and Mechanics. 66, 2002, 171–178.

    Article  MATH  MathSciNet  Google Scholar 

  12. Rumyantsev, V. V., ‘On the Lyapunovapos; methods in the study of stability of motions of rigid bodies with fluid-filled cavities,’ in Advances in Applied Mechanics, Vol. 8, Academic, New York, 1964, pp 183–232.

  13. Moiseyev, N. N. and Rumyantsev, V. V., The Dynamics of a Body with Cavities Containing Liquid, Nauka, Moscow, 1965; edited by N. H. Abramson, Springer-Verlag, New York, 1968.

  14. Wang, Z. L. and Liu, Y. Z., Dynamic Stability of Bodies Containing Fluids, Science Press, Beijing, P. R. China, 2002 (in Chinese).

  15. Stewartson, K., ‘On the stability of a spinning top containing liquid,’ Journal of Fluid Mechanics. 5, 1959, 577–589.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Wedemeyer, E. H., ‘The unsteady flow within a spinning cylinder,’ Journal of Fluid Mechanics. 20, 1964, 383–399.

    Article  MathSciNet  ADS  Google Scholar 

  17. Pfeiffer, F., Problem of Contained Rotating Fluids with Respect to Aerospace Applications, ESA, Special Publication 129, France, 1977, 55–62.

  18. Dosayev, M. Z. and Samsonov, V. A. ‘The stability of the rotation of a heavy body with a viscous filling,’ Journal of Applied Mathematics and Mechanics. 66, 2002, 419–424.

    Article  MATH  MathSciNet  Google Scholar 

  19. Holmes, P. J. and Marsden, J. E., ‘A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam,’ Arch. Ration. Mech. An. 76, 1981, 135–165.

    MATH  MathSciNet  Google Scholar 

  20. Holmes, P. J. and Marsden, J. E., ‘Horseshoe and Arnold diffusion for Hamiltonian system on Lie groups,’ Indiana Univ. Math. Journal 32, 1983, 273–309.

    Article  MATH  MathSciNet  Google Scholar 

  21. Slemrod, M. and Marsden, J. E. ‘Temporal and spatial chaos in a van der Waals fluid due to periodic thermal fluctuations,’ Advances in Applied Mathematics 6, 1985, 135–158.

  22. Melnikov, V. K., ‘On the stability of the centre for time-periodic perturbations,’ Trans. Moscow Math. Soc. 12, 1963, 1–57.

    MATH  Google Scholar 

  23. Nayfeh, A. H. and Balachandran, B., Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York, 1995.

  24. Kuang, J. L., Tan, S. H., and Leung, A. Y. T., ‘Chaotic attitude motion of satellites under small perturbation torques,’ Journal of Sound and Vibration 235, 2000, 175–200.

    Article  ADS  Google Scholar 

  25. Kuang, J. L. and Leung, A. Y. T., ‘H_∞ feedback for the attitude control of liquid-filled spacecraft,’ Journal of Guidance, Dynamics, and Control 24, 2001, 46–53.

    Article  Google Scholar 

  26. Kuang, J. L., Tan, S. H., Arichandran, K. and Leung, A. Y. T., ‘Chaotic dynamics of an asymmetrical gyrostat,’ International Journal of Non-Linear Mechanics 36, 2001, 1213–1233.

    Article  MATH  ADS  Google Scholar 

  27. Kuang, J. L., Meehan, P. A., Leung, A. Y. T. and Tan, S. H., ‘Nonlinear dynamics of a satellite with deployable solar panel arrays,’ International Journal of Non-Linear Mechanics 39, 2004, 1161–1179.

    Article  MATH  ADS  Google Scholar 

  28. Kuang, J. L., Leung, A. Y. T., and Tan, S. H., ‘Chaotic attitude oscillations of a satellite filled with a rotating ellipsoidal mass of liquid subject to gravity-gradient torques,’ Chaos 39, 2004, 111–117.

    Article  MathSciNet  ADS  Google Scholar 

  29. Kuang, J. L. and Leung, A. Y. T., ‘Homoclinic orbits of the Kovalevskaya top with perturbations,’ ZAMM 85(4), 2005, 277–302.

    Article  MATH  MathSciNet  Google Scholar 

  30. Leung, A. Y. T. and Kuang, J. L., ‘Spatial chaos of 3-D elastica with the Kirchhoff gyrostat analogy using Melnikov integrals,’ International Journal of Numerical Methods in Engineering 61, 2004, 1674–1709.

    Article  MATH  MathSciNet  Google Scholar 

  31. Mielke, A. and Holmes, P., ‘Spatially complex equilibria of buckled rods,’ Arch. Ration. Mech. An. 101, 1988, 318–348.

    MathSciNet  Google Scholar 

  32. Tong, X., Tabarrok, B., and Rimrott, F. P. J., ‘Chaotic motion of an asymmetric gyrostat in the gravitational field,’ International Journal of Non-Linear Mechanics 30, 1995, 191–203.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Tong, X. and Tabarrok, B., ‘Melnikovapos; integral for rigid bodies subject to small perturbation torques,’ Archive of Applied Mechanics 66, 1996, 215–230.

    Article  MATH  Google Scholar 

  34. Koiller, J., ‘A mechanical system with a ‘Wild’ horseshoe,’ Journal of Mathematical Physics 25, 1984, 1599–1604.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Ziglin, S. L., ‘Decomposition of separatrices, branching of solutions and non-existence of an integral in the dynamics of a rigid body,’ Trans. Moscow Math. Soc. 41, 1980, 283–298.

    MathSciNet  Google Scholar 

  36. Wiggins, S. and Shaw, S. W., ‘Chaos and three-dimensional horseshoe in slowly varying oscillators,’ Journal of Applied Mechanics 55, 1988, 959–968.

    Article  MATH  MathSciNet  Google Scholar 

  37. Wittenburg, J., ‘Beitrage zur dyn ä mik von gynostaten,’ Accademia Nazional dei Lincei, Quaderno N. 217, 1975, 1–187.

    Google Scholar 

  38. Van der Heijden, G. H. M., and Thompson, J. M. T., The Chaotic Instability of a Slowly Spinning Asymmetric Top, Mathematical and Computer Modelling Vol.36, 2002, PP. 359–369.

  39. Thompson, J. M. T. and Stewart, H. B., Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists, Chichester [West Sussex]; Wiley, New York, Second Edition, 2002.

    Google Scholar 

  40. Hagedorn, P., Non-Linear Oscillations, translated and edited by Wolfram Stadler, Oxford Clarendon Press, New York: University Press, 1982, pp. 154–183.

  41. Chen, Y. S. and Leung, A. Y. T., Bifurcation and Chaos in Engineering, Springer-Verlag, London, 1998.

    MATH  Google Scholar 

  42. Davies, M. A. and Moon, F. C., ‘3-D spatial chaos in the elastica and the spinning top: Kirchhoff analogy,’ Chaos 3, 1993, 93–99.

    Article  PubMed  MATH  MathSciNet  ADS  Google Scholar 

  43. Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, A., ‘Determining Lyapunov exponents from a time series,’ Physica D 16, 1985, 285–317.

    Google Scholar 

  44. Conte (ed.), R., The Painleve Property One Century Later, Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  45. Deprit, A., ‘A free rotation of a rigid body studied in the phase plane,’ American Journal of Physics 35, 1967, 424–427.

    Article  ADS  Google Scholar 

  46. Nayfeh, T. A., Asrar, W., and Nayfeh, A. H., ‘Three-mode interactions in harmonically excited systems with quadratic nonlinearities,’ Nonlinear Dynamics 3, 1992, 385–410.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, J.L., Meehan, P.A. & Leung, A.Y.T. On the Chaotic Instability of a Nonsliding Liquid-Filled Top with a Small Spheroidal Base via Melnikov-Holmes-Marsden Integrals. Nonlinear Dyn 46, 113–147 (2006). https://doi.org/10.1007/s11071-006-9019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9019-y

Key words

Navigation