Skip to main content

Advertisement

Log in

River-damming landslides during the 1960 Chile earthquake (M9.5) and earlier events: implications for risk assessment in the San Pedro River basin

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Damming rivers by landslides and ensuing outburst flooding is a common and potentially hazardous phenomenon worldwide, especially in tectonically active regions. Remarkable examples are the damming of the upper course of the San Pedro River (SPR) in south Chile during the 1960 Chile earthquake (M9.5) and its predecessor in 1575. Outburst floods following both events had tragic consequences for downstream communities. Here, we study both events from multiple sources of information, including previously published and newly found historical records, satellite imagery, LiDAR topography, and sedimentological and geomorphological field observations. We present the first detailed geomorphic map of the region. Morphological similarities between ancient deposits at the SPR and those associated with the 1960 earthquake suggest that the SPR has been dammed repeatedly in the past. The steep incision of the SPR and the sediments of glacio-lacustrine origin in the surrounding slopes facilitate the initiation of large landslides. The knowledge gained from studying these past events provides important implications for future risk assessments. We propose that besides large earthquakes, smaller and more frequent earthquakes as well as changes in land use, can also result in river-damming events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agurto H, Rietbrock A, Barrientos S, Bataille K, Legrand D (2012) Seismo-tectonic structure of the Aysén Region, Southern Chile, inferred from the 2007 Mw = 6.2 Aysén earthquake sequence. Geophys J Int 190(1):116–130. https://doi.org/10.1111/j.1365-246X.2012.05507.x

    Article  ADS  Google Scholar 

  • Alexander D (2012) Vulnerability to Landslides. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. John Wiley & Sons Ltd, Hoboken, pp 175–198

    Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171(3):329–334

    Article  ADS  CAS  Google Scholar 

  • Antinao JL, Gosse J (2009) Large rockslides in the Southern Central Andes of Chile (32–34.5°S): tectonic control and significance for quaternary landscape evolution. Geomorphology 104(3):117–133. https://doi.org/10.1016/j.geomorph.2008.08.008

    Article  ADS  Google Scholar 

  • Astroza M, Ruiz S, Astroza R (2012) Damage assessment and seismic intensity analysis of the 2010 (M-w 8.8) Maule earthquake. Earthq Spectra. https://doi.org/10.1193/14000027

    Article  Google Scholar 

  • Astroza M, Lazo R (2010) Estudio de los daños de los terremotos del 21 y 22 de Mayo de 1960. Paper presented at the X Jornadas de Sismología e Ingeniería Antisismica, Santiago, Chile

  • Astroza M, Moya R, Sanhueza S (2002) Estudio comparativo de los efectos de los terremotos de Chillan de 1939 y de talca de 1928. Paper presented at the VIII Jornadas Chilenas de Sismología e Ingeniería Antisísmica, Valparaíso, Chile

  • Beck S, Barrientos S, Kausel E, Reyes M (1998) Source characteristics of historic earthquakes along the central Chile subduction askew et alzone. J S Am Earth Sci 11(2):115–129

    Article  Google Scholar 

  • Bhuyan K, Tanyaş H, Nava L, Puliero S, Meena SR, Floris M, Catani F (2023) Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data. Sci Rep 13(1):162

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Bontemps N, Lacroix P, Larose E, Jara J, Taipe E (2020) Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nat Commun 11(1):1–10

    Article  Google Scholar 

  • Bradley K, Mallick R, Andikagumi H, Hubbard J, Meilianda E, Switzer A, Benazir B (2019) Earthquake-triggered 2018 Palu valley landslides enabled by wet rice cultivation. Nat Geosci 12:1–5

    Article  Google Scholar 

  • Budimir MEA, Atkinson PM, Lewis HG (2015) Earthquake-and-landslide events are associated with more fatalities than earthquakes alone. Nat Hazards 72(2):895–914. https://doi.org/10.1007/s11069-014-1044-4

    Article  Google Scholar 

  • Cisternas M, Atwater BF, Torrejón F, Sawai Y, Machuca G, Lagos M, Kamataki T (2005) Predecessors of the giant 1960 Chile earthquake. Nature 437(7057):404

    Article  ADS  PubMed  CAS  Google Scholar 

  • Cisternas M, Carvajal M, Wesson R, Ely LL, Gorigoitia N (2017a) Exploring the historical earthquakes preceding the giant 1960 Chile earthquake in a time-dependent seismogenic zone. Bull Seismol Soc Am 107(6):2664–2675. https://doi.org/10.1785/0120170103

    Article  Google Scholar 

  • Cisternas M, Garrett E, Wesson R, Dura T, Ely L (2017b) Unusual geologic evidence of coeval seismic shaking and tsunamis shows variability in earthquake size and recurrence in the area of the giant 1960 Chile earthquake. Mar Geol 385:101–113

    Article  ADS  Google Scholar 

  • Davis S, Karzulovic J (1961) Deslizamientos en el valle del río San Pedro provincia de Valdivia, Chile. Paper presented at the Anales de la Facultad de Ciencias Físicas y Matemáticas

  • Fan X, Scaringi G, Korup O, West AJ, van Westen CJ, Tanyas H, Huang R (2019) Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev Geophys 57:421–503

    Article  ADS  Google Scholar 

  • Fan X, Dufresne A, Subramanian SS, Strom A, Hermanns R, Stefanelli CT, Geertsema M (2020) The formation and impact of landslide dams–state of the art. Earth-Sci Rev 203:103116

    Article  Google Scholar 

  • Fan X, Liu B, Luo J, Pan K, Han S, Zhou Z (2023) Comparison of earthquake-induced shallow landslide susceptibility assessment based on two-category LR and KDE-MLR. Sci Rep 13(1):833

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaidzik K, Żaba J, Ciesielczuk J (2020) Tectonic control on slow-moving Andean landslides in the Colca valley. Peru J Mt Sci 17(8):1807–1825

    Article  Google Scholar 

  • General Direction for Water (2019) Official Hydrometeorological and water quality information online. http://snia.dga.cl/BNAConsultas/reportes

  • Habit E, Parra O (2012) Fundamento y aproximación Metodológica del Estudio de peces del Río San Pedro. Gayana (concepción) 76:01–09

    Article  Google Scholar 

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic landslide hazard analyses. Eng Geol 122(1–2):9–21

    Article  Google Scholar 

  • Hauser A (2000) Remociones en masa en Chile (versión actualizada): Servicio Nacional de Geología y Minería

  • Hermanns RL, Valderrama Murillo PA, Fauqué LE, Penna IM, Sepúlveda SA, Moreiras SM, Zavala Carrión BL (2012) Landslides In the andes and the need to communicate on an Interandean level on landslide mapping and research. Rev De La Asoc Geol Argent 69(3):321–327

    Google Scholar 

  • Hewitt K (1998) Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology 26(1–3):47–80

    Article  ADS  Google Scholar 

  • INGEMMET (2020) Deslizamiento de Achoma ocurrido el 18 de junio del 2020. Región Arequipa, provincia Caylloma, distrito Achoma. Instituto Geológico Minero y Metalúrgico, Dirección de Geología Ambiental y Riesgo, Perú, p 31

  • Kanamori H, Cipar J (1974) Focal process of the great Chilean earthquake May 22, 1960. Phys Earth Planet Inter 9(2):128–136

    Article  ADS  Google Scholar 

  • Keefer D (1984) Landslides caused by earthquakes. GSA Bull 95(4):406–421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2

    Article  Google Scholar 

  • Keefer D, Larsen M (2007) Assessing landslide hazards. Science 316:1136–1138. https://doi.org/10.1126/science.1143308

    Article  PubMed  CAS  Google Scholar 

  • Laugenie C (1982) La región des lacs, Chili meridional, recherches sur l’évolution géomorphologique d’un piémont glaciaire andin (Doctoral dissertation, Tesis de Doctorado de Estado, Universidad de Bordeaux III, Tomos 1 y 2, 822 p., Burdeos, Francia)

  • Lomnitz C (1970) Major earthquakes and tsunamis in Chile during the period 1535 to 1955. Geol Rundsch 59(3):938–960. https://doi.org/10.1007/bf02042278

    Article  ADS  Google Scholar 

  • Lomnitz C (2004) Major earthquakes of Chile: a historical survey, 1535–1960. Seismol Res Lett 75(3):368–378

    Article  Google Scholar 

  • Marc O, Hovius N, Meunier P, Uchida T, Hayashi S (2015) Transient changes of landslide rates after earthquakes. Geology 43(10):883–886

    Article  ADS  Google Scholar 

  • Matos-Llavona PI, Ely LL, MacInnes B, Dura T, Cisternas MA, Bourgeois J, Bruce D, DePaolis J, Dolcimascolo A, Horton BP, Melnick D (2022) The giant 1960 tsunami in the context of a 6000-year record of paleotsunamis and coastal evolution in south-central Chile. Earth Surf Proc Land 47(8):2062–2078

    Article  ADS  Google Scholar 

  • Meteorological Direction of Chile (2019) Climatological Yearbook. https://climatologia.meteochile.gob.cl/application/index/anuarios

  • Moernaut J, Van Daele MV, Heirman K, Fontijn K, Strasser M, Pino M, De Batist M (2014) Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in south central Chile. J Geophys Res Solid Earth 119(3):1607–1633. https://doi.org/10.1002/2013jb010738

    Article  ADS  Google Scholar 

  • Molenaar A, Van Daele M, Huang JJS, Strasser M, De Batist M, Pino M, Moernaut J (2022) Disentangling factors controlling earthquake-triggered soft-sediment deformation in lakes. Sediment Geol 438:106200

    Article  Google Scholar 

  • Montessus de Ballore F (1912) Historia sísmica de los Andes Meridionales al sur del paralelo XVI. Segunda parte. Imprenta Cervantes. Santiago

  • Moreno M, Melnick D, Rosenau M, Baez J, Klotz J, Oncken O, Hase H (2012) Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet Sci Lett 321:152–165

    Article  ADS  Google Scholar 

  • Moreno M, Li S, Melnick D, Bedford J, Baez J, Motagh M, Gutknecht B (2018) Chilean megathrust earthquake recurrence linked to frictional contrast at depth. Nat Geosci 11(4):285

    Article  ADS  CAS  Google Scholar 

  • National Seismological Center of Chile (2019) Great earthquakes in Chile. https://www.csn.uchile.cl/sismologia/grandes-terremotos-en-chile/

  • Noguera C, Garcés E (1991) Deslizamiento en el río San Pedro, analizado 30 años después. Paper presented at the Memorias, 9o Congreso Panamericano de Mecánica de Suelos e Ingeniería de Fundaciones, Viña del Mar, Chile

  • Pacheco Quevedo R, Velastegui-Montoya A, Montalván-Burbano N, Morante-Carballo F, Korup O, Daleles Rennó C (2023) Land use and land cover as a conditioning factor in landslide susceptibility: a literature review. Landslides 20:1–16

    Article  Google Scholar 

  • Pokharel B, Alvioli M, Lim S (2021) Assessment of earthquake-induced landslide inventories and susceptibility maps using slope unit-based logistic regression and geospatial statistics. Sci Rep 11(1):1–15

    Article  Google Scholar 

  • Rabby YW, Li Y, Hilafu H (2023) An objective absence data sampling method for landslide susceptibility mapping. Sci Rep 13(1):1740

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • De Ramón A, Larraín J (1979) Una metrología colonial para Santiago de Chile: de la medida castellana al sistema métrico decimal. Historia (Santiago: Instituto de Historia, Pontificia Universidad Católica de Chile) 14: 5–71

  • Rodríguez C, Pérez Y, Moreno H, Clayton J, Antinao J, Duhart P, Martin M (1999) Area de Panguipulli-Riñihue, Región de Los Lagos. Serv Nac Geol Min Mapas Geol, 10(1)

  • Ruiz S, Madariaga R (2018) Historical and recent large megathrust earthquakes in Chile. Tectonophysics 733:37–56

    Article  ADS  Google Scholar 

  • Sepúlveda SA, Serey A, Lara M, Pavez A, Rebolledo S (2010) Landslides induced by the April 2007 Aysén Fjord earthquake. Chil Patagon Landslides 7(4):483–492. https://doi.org/10.1007/s10346-010-0203-2

    Article  Google Scholar 

  • Serey A, Piñero-Feliciangeli L, Sepúlveda SA, Poblete F, Petley DN, Murphy W (2019) Landslides induced by the 2010 Chile megathrust earthquake: a comprehensive inventory and correlations with geological and seismic factors. Landslides 16(6):1153–1165. https://doi.org/10.1007/s10346-019-01150-6

    Article  Google Scholar 

  • Silgado E (1985) Terremotos destructivos en America del Sur: 1530–1894. Centro Regional de Sismología para America del Sur (CERESIS), 10: 328

  • Solari ME, Cueto C, Hernández F, Rojas JF, Camus P (2011) Procesos territoriales y bosques en la cuenca del río Valdivia (siglos XVI-XIX). Revista Geogr Norte Grande 49:45–62

    Article  Google Scholar 

  • USGS (2016) M 7.6 - 41km SW of Puerto Quellon, Chile, https://earthquake.usgs.gov/earthquakes/feed/v1.0/detail/us10007mn3.kml

  • Vanneste K, Wils K, Van Daele M (2018) Probabilistic evaluation of fault sources based on paleoseismic evidence from mass-transport deposits: the example of Aysén Fjord, Chile. J Geophys Res Solid Earth 123:9842–9865. https://doi.org/10.1029/2018JB016289

    Article  ADS  Google Scholar 

  • Watkinson IM, Hall R (2019) Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat Geosci 12:940–945

    Article  ADS  CAS  Google Scholar 

  • Weischet W (1963) Further observations of geologic and geomorphic changes resulting from the catastrophic earthquake of May 1960, in Chile. Bull Seismol Soc Am 53(6):1237–1257

    Article  Google Scholar 

  • Wils K, Van Daele M, Kissel C, Moernaut J, Schmidt S, Siani G, Lastras G (2020) Seismo-turbidites in Aysén Fjord (southern Chile) reveal a complex pattern of rupture modes along the 1960 megathrust earthquake segment. J Geophys Res Solid Earth 125(9):e2020JB019405

    Article  ADS  Google Scholar 

  • Wright C, Mella A (1963) Modifications to the soil pattern of South-Central Chile resulting from seismic and associated phenomenona during the period May to August 1960. Bull Seismol Soc Am 53(6):1367–1402

    Article  Google Scholar 

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31(8):2097–2110. https://doi.org/10.1029/95wr01136

    Article  ADS  Google Scholar 

  • Zúñiga Álvarez A (2019) Análisis geológico-geotécnico de sedimentos glaciolacustres asociados a los graduales del río San Pedro, Región de Los Lagos. Undergraduate Thesis of University of Chile. Unpublished. Available in https://repositorio.uchile.cl/handle/2250/173836

Download references

Acknowledgements

CAC acknowledges the support of the Doctoral program of the Institute of Geography of the Pontificia Universidad Católica de Chile. MC and DM acknowledge the support of the Iniciativa Científica Milenio (ICM) through Grant NºNC160025 and the Chilean National Fund for Development of Science and Technology (FONDECYT) Nº1231735. JM acknowledges the support of the Austrian Science Fund (FWF), project NºP34504. Special thanks to Marco Cisternas for his support and valuable ideas and Fernando Torrejón for his collaboration in the search for unpublished historical information and his references to information already published.

Funding

This work was supported by the National Agency for Research and Development of Chile (ANID) through the following programs: Millennium Scientific Initiative (ICM), Grant/Award Number: NC160025; Chilean National Fund for Development of Science and Technology (FONDECYT), Grant/Award Number: 1231735; and Doctoral support program Grant/Award Number: 21201355. Austrian Science Fund (FWF), project number P34504.

Author information

Authors and Affiliations

Authors

Contributions

CAC, MC, DM, and JM led the preparation of the manuscript and conceptualized the research. CAC, DM, and JM collected field data and assisted in logistics. DM obtained the main source of funding for this project. CAC and MC analyzed and contextualized the historical information about the earthquakes. CAC, DM, and JM performed the landslide analysis. CAC and CA processed the GIS information, including the LiDAR data and elaborated the geomorphological map. CAC and FG collected information and calculated the erosion rate of the LT3 scarp. All authors contributed to the review and editing of the final manuscript.

Corresponding author

Correspondence to Cristian Araya-Cornejo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya-Cornejo, C., Carvajal, M., Melnick, D. et al. River-damming landslides during the 1960 Chile earthquake (M9.5) and earlier events: implications for risk assessment in the San Pedro River basin. Nat Hazards (2024). https://doi.org/10.1007/s11069-024-06474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11069-024-06474-8

Keywords

Navigation