Skip to main content

Advertisement

Log in

Unravelling increasing flood hazard and influential factors in a tidal river

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Flood disasters are destructive especially in prosperous and urbanized estuarine regions, where the flood regime is much more complex due to multiple fluvial–estuarine impacts. The Shenzhen River (SZR), located in one of the most prosperous regions of southern China, is vulnerable to increasing flood risk. Unravelling the influential factors is of particular significance to flood hazards prevention and urban safety for the SZR. Based on the field-measured floods on June 13, 2008 (“2008.06”) and August 29, 2018 (“2018.08”) with roughly equal magnitudes of rainfall and tide, the changing flood risk in the SZR basin was assessed. Considering the substantial development of tidal flat plants in the past two decades, a physical model of the SZR was built to quantify the impacts of changing river regime on the flood stage. The model covers the whole mainstream of tidal reach and half of the Shenzhen Bay (SZB), which was well calibrated and validated by in situ flow process. Several situations with different ranges of riverine vegetation and estuarine mangrove, including all vegetation (actual situation), half vegetation, no vegetation, mangrove in 2002 and 2018, were modelled to explore flood stage variations in 2-yr and 50-yr return period. The results found that the “2018.08” flood stage was about 1.4 m higher than “2008.06” flood. Moreover, the rainfall–runoff duration in “2018.08” was significantly decreased by 1 h less than that of “2008.06” flood, indicating increased flood risk in the SZR. The flood stage in the middle reach increases by more than 0.6 m driven by the riverine vegetation during the 50-yr return period flood, while the flood stage rises less than 0.1 m for the flood with 2-yr return period. Moreover, the extended estuarine mangrove forest resulted in about 0.2 m flood stage increment in the lower reach. The effects of sea level rise and sediment deposition after channel dredging on the flood risk in the SZR were further discussed. The effects of sea level rise and sediment deposition after channel dredging on flood risk were further discussed in the SZR. Channel infilling probably causes a flood stage increase of approximately 0.5 m for all reaches, while the influence of sea level is relatively slight but cumulative. Sufficient river management and planning, such as seasonal removal of riverine vegetation, mangrove management and regular topography surveys, should be taken into consideration in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Download references

Acknowledgements

This work was jointly supported by “National Natural Science Foundation of China” (NSFC, Project Nos. 42006157), The Belt and Road Special Foundation of the National Key Laboratory of Water Disaster Prevention (2020492111), The Open Research Fund of Key Laboratory of Sediment Science and Northern River Training, the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research, (Grant NO. IWHR-SEDI-202105), the Science and Technology Planning Project of Guangzhou city, China (Project No. 202002030468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Wu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, W., Hu, X. et al. Unravelling increasing flood hazard and influential factors in a tidal river. Nat Hazards 120, 4083–4100 (2024). https://doi.org/10.1007/s11069-023-06371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-06371-6

Keywords

Navigation