Skip to main content
Log in

Submarine landslide hazard in the Sines Contourite Drift, SW Iberia: slope instability analysis under static and transient conditions

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Sines Contourite Drift (SCD) is a plastered drift with terraced-like morphology, formed by the Mediterranean Outflow Water (MOW) that emplaced in the Alentejo Margin, SW Iberia. The high (~ 27 cm/kyr) and variable sedimentation rates experienced since the Pleistocene resulted in low consolidation, and the development of excess pore pressure, which, associated with the seismicity in SW Iberia, offer significant conditions for slope instability in the SCD’s Late Pleistocene-Holocene muddy-contourite and hemipelagic sediments. Therefore, it is crucial to assess the susceptibility of the area to submarine landslide hazards. Slope instability is assessed both under static and transient conditions, based on the sediment mechanical properties, obtained through drained and undrained triaxial tests performed on sediment samples of three gravity cores (CO14-GC-2B, CO14-GC-3B, and CO14-GC-7B), respectively, retrieved at 1208-, 1280-, and 1425-m water depth (mwd). Those properties consist of internal friction angle (ϕ\({\prime}\)), with average values ranging between 28.5° and 35.1°; sediment unit weight (γ) that ranges from 16.9 to 18.1 kN/m3; and undrained shear strength (Su), ranging between 5.81 and 6.50 kPa. Cohesion (c\({\prime}\)) values are incipient and thus considered as 1 kPa in the modeling under static conditions. The analysis also accounts for the peak ground acceleration (PGA), determined according to the magnitude of seismicity recorded in the area. The SCD is prone to slope instability and collapse, especially in gradients > 5°, due to the sediment’s low consolidation, strength, and permeability. Seismicity greatly reduces the factor of safety (FS), promoting slope instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves T, Gawthorpe R, Hunt D, Monteiro JH (2003) Cenozoic tectono-sedimentary evolution of the Western Iberian Margin. Mar Geol 195(1):75–108

    Google Scholar 

  • Alves T, Moita C, Cunha T, Monteiro J (2009) Structural evolution and timing of continental rifting in the Northeast Atlantic, West Iberian Margin. In: 71st EAGE conference and exhibition incorporating SPE EUROPEC 2009

  • Ambraseys N, Douglas J, Sarma SK (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 3(1):1–53

    Google Scholar 

  • Ambar I, Howe M (1979) Observations of the Mediterranean outflow-II. The deep circulation in the vicinity of the Gulf of Cadiz. Deep-Sea Res 26:555–568

    Google Scholar 

  • Baeten N, Laberg J, Vanneste M, Forsberg C, Kvalstad T, Forwick M, Vorren T, Haflidason H (2014) Origin of Shallow Submarine mass movements and their glide planes—sedimentological and geotechnical analyses from the continental slope Off Northern Norway. J Geophys Res: Earth Surface 119:26. https://doi.org/10.1002/2013JF003068

    Article  Google Scholar 

  • Baptista MA, Miranda P, Miranda JM, Victor LM (1996) Rupture extent of the 1755 Lisbon earthquake inferred from numerical modeling of tsunami data. Phys Chem Earth 21:65–70

    Google Scholar 

  • Baraza J, Ercilla G, Lee H (1992) Geotechnical properties and preliminary assessment of sediment stability on the continental slope of the Northwestern Alboran Sea. Geo-Mar Lett 12:150–156

    Google Scholar 

  • Baraza J, Lee H, Kayen R, Hampton M (1990) Geotechnical characteristics and slope stability on the Ebro margin, western Mediterranean. Mar Geol 95:379–393

    Google Scholar 

  • Boillot G, Girardeau J, Kornprobst J (1989) Rifting of the West Galicia continental margin: a review. Bull Soc Geol France 8(4):393–400

    Google Scholar 

  • Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005a) Explaining the Storegga slide. Mar Pet Geol 22:11–19. https://doi.org/10.1016/j.marpetgeo.2004.12.003

    Article  Google Scholar 

  • Bryn P, Berg K, Stoker M, Haflidason H, Solheim A (2005b) Contourites and their relevance for mass wasting along the Mid-Norwegian Margin. Mar Pet Geol 22:85–96

    Google Scholar 

  • Buforn E, Bezzeghoud M, Udías A, Pro C (2004) Seismic Sources on the Iberia-African Plate Boundary and their Tectonic Implications. Pure Appl Geophys 161(3): 623–646

    Google Scholar 

  • Buforn E, Udías A, Colombas A (1988) Seismicity, source mechanisms, and tectonics of the Azores-Gibraltar plate boundary. Tectonophysics 152:89–118. https://doi.org/10.1016/0040-1951(88)90031-5

    Article  Google Scholar 

  • Bugge T, Belderson R, Kenyon N (1988) The Storegga slide. Philos Trans R Soc A 325:357–388

    Google Scholar 

  • Camerlenghi A, Urgeles R, Fantoni L (2010) A database on submarine landslides of the Mediterranean Sea. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research. Springer, Dordrecht, pp 503–513

    Google Scholar 

  • Campos Costa A, Sousa ML, Carvalho A (2008) Seismic zonation for portuguese national annex of eurocode 8. In: WCEE—the 14th World conference on earthquake engineering Beijing, China, pp 12–17

  • Coppier G (1982) Tectonique et sédimentation tertiaires sur la marge Sud-Portugaise. Thèse 3ème cycle, Université Paris VI.

  • Carvalho A, Zonno G, Franceschina G, Bilé Serra J, Campos Costa A (2008) Earthquake shaking scenarios for the metropolitan area of lisbon. Soil Dyn Earthq Eng 28:347–364

    Google Scholar 

  • Casas D, Casalbore D, Yenes M, Urgeles R (2015) Submarine mass movements around the Iberian Peninsula. The building of continental margins through hazardous processes. Bol Geol Min 126(2–3):257–278

    Google Scholar 

  • Casas D, Ercilla G, Yenes M, Estrada F, Alonso B, García M, Somoza L (2011) The Baraza slide. A sliding model. Mar Geophys Res 32(1–2):245–256

    Google Scholar 

  • Cherubin L, Carton X, Paillet J, Morel Y, Serpatte A (2000) Instability of the Mediterranean Water undercurrents southwest of Portugal: effects of baroclinicity and topography. Oceanological Acta 23(5):551–573

    Google Scholar 

  • Collico S, Arroyo M, Urgeles R, Gràcia E, Devincenzi M, Peréz N (2020) Probabilistic mapping of earthquake-induced submarine landslide susceptibility in the South-West Iberian margin. Mar Geol. https://doi.org/10.1016/j.margeo.2020.106296

    Article  Google Scholar 

  • Custódio S, Dias NA, Carrilho F, Góngora E, Rio I, Marreiros C, Morais I, Alves P, Matias L (2015) Earthquakes in Western Iberia: improving the understanding of lithospheric deformation in a slowly deforming region. Geophys J Int 203:127–145. https://doi.org/10.1093/gji/ggv285

    Article  Google Scholar 

  • Custódio S, Lima V, Vales D, Cesca S, Carrilho F (2016) Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: application to the Azores–western Mediterranean region. Tectonophysics 676:70–89

    Google Scholar 

  • Damuth JE (1975) Echo character of the western equatorial Atlantic floor and its relationship to the dispersal and distribution of the terrigenous sediment. Mar Geol 18:17–45. https://doi.org/10.1016/0025-3227(75)90047-X

    Article  Google Scholar 

  • Damuth JE (1978) Echo character of the Norwegian-Greenland Sea: relationship to quaternary sedimentation. Mar Geol 28:1–36

    Google Scholar 

  • Damuth JE (1980) Use of high-frequency (3.5–12 kHz) echograms in the study of near bottom sedimentation processes in the deep-sea: a review. Mar Geol 38:51–75

    Google Scholar 

  • Damuth JE, Olsen H (2001) Neogene-Quaternary contourite and related deposition on the West Shetland alope and Faeroe-Shetland channel revealed by high-resolution seismic studies. Mar Geophys Res 22:369–399

    Google Scholar 

  • Duarte J, Rosas F, Terrinha P, Schellart W, Boutelier D, Gutscher MA, Ribeiro A (2013) Are subduction zones invading the Atlantic? Evidence from the SW Iberia margin. Geology 41:839–842. https://doi.org/10.1130/G34100.1

    Article  Google Scholar 

  • Ercilla G, Casas D, Alonso B, Casalbore D, Estrada F, Idárraga-García J, López-González N, Pedrosa M, Teixeira M, Sánchez-Guillamón O, Azpiroz-Zabala M, Bárcenas P, Chiocci F, García M, Galindo-Zaldívar J, Geyer A, Gómez-Ballesteros M, Juan C, Martorelli E, Mata P, Nespereira P, Palomino D, Rueda J, Vázquez JT, Yenes M (2021a) Deep sea sedimentation. Ref Module Earth Syst Environ Sci. https://doi.org/10.1016/B978-0-12-818234-5.00129-2

    Article  Google Scholar 

  • Ercilla G, Casas D, Alonso B, Casalbore D, Galindo-Zaldívar J, García-Gil S, Martorelli E, Vázquez J-T, Azpiroz-Zabala M, DoCouto D, Estrada F, Fernández-Puga MC, González-Castillo L, González-Vida JM, Idárraga-García J, Juan C, Macías J, Madarieta-Txurruka A, Nespereira J, Palomino D, Sánchez-Guillamón O, Tendero-Salmerón V, Teixeira M, Valencia J, Yenes M (2021b) Offshore geological hazards: charting the course of progress and future directions. Oceans 2(2):393–428. https://doi.org/10.3390/oceans2020023

    Article  Google Scholar 

  • Ercilla G, Juan C, Hernández-Molina J, Bruno M, Estrada F, Alonso B, Casas D, Farran M, Llave E, García M, Vázquez JT, D’Acremont E, Gorini C, Palomino D, Valencia J, El Moumni B, Ammar A (2016) Significance of bottom currents in deep-sea morphodynamics: an example from the Alboran Sea. Mar Geol 378:157–170

    Google Scholar 

  • Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215(1–2):45–57

    Google Scholar 

  • Fredlund D, Krahn J (1977) Comparison of slope stability methods of analysis. Can Geotech J 14:429–439

    Google Scholar 

  • Fukao Y (1973) Thrust faulting at a lithospheric plate boundary the Portugal earthquake of 1969. Earth Planet Sci Lett 18(2):205–216

    Google Scholar 

  • Gamboa D, Omira R, Piedade A, Terrinha P, Zitellini RC (2021a) Destructive episodes and morphological rejuvenation during the lifecycles of tectonically active seamounts: Insights from the Gorringe Bank in the NE Atlantic. Earth Planet Sci Lett 559:116772. https://doi.org/10.1016/j.epsl.2021.116772

    Article  CAS  Google Scholar 

  • Gamboa D, Omira R, Terrinha P (2021b) A database of submarine landslides offshore West and Southwest Iberia. Sci Data 8:185. https://doi.org/10.1038/s41597-021-00969-w

    Article  Google Scholar 

  • Gamboa D, Omira R, Terrinha P (2022) Spatial and morphometric relationships of submarine landslides offshore west and southwest Iberia. Landslides. https://doi.org/10.1007/s10346-021-01786-3

    Article  Google Scholar 

  • García M, Llave E, Hernández-Molina FJ, Lobo FJ, Ercilla G, Alonso B, Casas D, Mena A, Fernández-Salas LM (2020) The role of late Quaternary tectonic activity and sea-level changes on sedimentary processes interaction in the Gulf of Cadiz upper and middle continental slope (SW Iberia). Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2020.104595

    Article  Google Scholar 

  • Gràcia E, Dañobeitia J, Vergés J, Parsifal team (2003) Mapping active faults offshore Portugal (36°N–38°N): implications for seismic hazard assessment along the southwest Iberian margin. Geology 31(1):83–86

    Google Scholar 

  • Hampton M, Lee H, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59. https://doi.org/10.1029/95RG03287

    Article  Google Scholar 

  • Hernández-Molina FJ, Ercilla G, Casas D, MOWER Team (2014a) Rasgos erosivos y depósitos arenosos generados por la MOW alrededor de Iberia: implicaciones paleoceanográficas, sedimentarias y económicas Informe Científico Campaña Oceanográfica MOWER. 111 pp.

  • Hernández-Molina FJ, Serra N, Stow D, Llave E, Ercilla G, Van Rooij D (2011) Alongslope oceanographic processes and sedimentary products around the Iberian margin. Geo-Mar Lett 31:315–341

    Google Scholar 

  • Hernández-Molina FJ, Sierro F, Llave E, Roque C, Stow D, Williams T, Lofi J, Van der Schee M, Arnáiz A, Ledesma S, Rosales C, Rodríguez-Tovar F, Pardo-Igúzquiza E, Brackenridge R (2016) Evolution of the gulf of Cadiz margin and southwest Portugal contourite depositional system: Tectonic, sedimentary and paleoceanographic implications from IODP expedition 339. Mar Geol 377:7–39. https://doi.org/10.1016/j.margeo.2015.09.013

    Article  Google Scholar 

  • Hernández-Molina FJ, Stow D, Alvarez-Zarikian C, Acton G, Bahr A, Balestra B, Ducassou E, Flood R, Flores J, Furota S, Grunert P, Hodell D, Jimenez-Espejo F, Kim J, Krissek L, Kuroda J, Li B, Llave E, Lofi J, Lourens L, Miller M, Nanayama F, Nishida N, Richter C, Roque C, Pereira H, Sanchez Goñi M, Sierro F, Singh A, Sloss C, Takashimizu Y, Tzanova A, Voelker A, Williams T, Xuan C (2014b) Onset of mediterranean outflow into the North Atlantic. Science 344(6189):1244–1250

    Google Scholar 

  • Hynes-Griffin ME, Franklin AG (1984) Rationalizing the seismic coefficient method. U.S. Army Corps of engineers waterways experiment station. Miscellaneous Paper GL–84–13

  • Ikari M, Kopf A (2015) The role of cohesion and overconsolidation in submarine slope failure. Mar Geol 369:153–161

    CAS  Google Scholar 

  • Ikari M, Strasser M, Saffer D, Kopf A (2011) Submarine landslide potential near the megasplay fault at the Nankai subduction zone. Earth Planet Sci Lett 312:453–462. https://doi.org/10.1016/j.epsl.2011.10.024

    Article  CAS  Google Scholar 

  • Johnston A (1996) Seismic moment assessment of earthquakes in stable continental regions – III, New Madrid 1811–1812, Charleston 1886, and Lisbon 1755. Geophys J Int 126:314–344

    Google Scholar 

  • Krastel S, Wefer G, Hanebuth T, Antobreh A, Freudenthal T, Preu B, Schwenk T, Strasser M, Violante R, Winkelmann D, MSS P, (2011) Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay). Geo-Mar Lett 31(4):271–283. https://doi.org/10.1007/s00367-011-0232-4

    Article  Google Scholar 

  • L’Heureux JS, Vanneste M, Rise L, Brendryen J, Forsberg CF, Nadim F, Longva O, Chand S, Kvalstad TJ, Haflidason H (2013) Stability, mobility, and failure mechanism for landslides at the upper continental slope off Vesterålen, Norway. Mar Geol 346:192–207. https://doi.org/10.1016/j.margeo.2013.09.009

    Article  Google Scholar 

  • Laberg J, Camerlenghi A (2008) The significance of contourites for submarine slope stability. In: Rebesco M, Camerlenghi A (eds). Contourites. Developments in sedimentology. Elsevier, Amsterdam

    Google Scholar 

  • Laberg J, Stoker M, Dahlgren K, de Haas H, Haflidason H, Hjelsteun B, Nielsen T, Shannon P, Vorren T, van Weereing T, Ceramicola S (2005) Cenozoic alongslope processes and sedimentation on the NW European Atlantic Margin. Mar Pet Geol 22(9–10):1069–1088. https://doi.org/10.1016/j.marpetgeo.2005.01.008

    Article  Google Scholar 

  • Laberg J, Vorren T (2000) The Trænadjupet Slide, offshore Norway—morphology, evacuation, and triggering mechanisms. Mar Geol 171:95–114

    Google Scholar 

  • Laberg J, Vorren T, Mienert J, Bryn P, Lien R (2002) The Trænadjupet Slide: a large slope failure affecting the continental margin of Norway 4,000 years ago. Geo-Mar Lett 22(1):19–24

    Google Scholar 

  • Lee H, Baraza J (1999) Geotechnical characteristics and slope stability in the Gulf of Cadiz. Mar Geol 155:173–190

    Google Scholar 

  • Lee H, Edwards BD (1986) Regional method to assess offshore slope stability. J Geotech Eng 112(5):489–509

    Google Scholar 

  • Lee H, Locat J, Desgagnés P, Parsons J, McAdoo B, Orange D, Puig P, Wong F, Dartnell P, Boulanger E (2007) Submarine mass movements on continental margins. In Nittrouer et al. (Eds.), Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy (pp. 213–273): Blackwell, Oxford, UK

  • Liu S, Van Rooij D, Vandorpe T, González-Pola C, Ercilla G, Hernández-Molina FJ (2019) Morphological features and associated bottom-current dynamics in the Le Danois Bank region (southern Bay of Biscay, NE Atlantic): a model in a topographically constrained small basin. Deep-Sea Res I 149:1–17

    Google Scholar 

  • Llave E, Hernández-Molina FJ, García M, Ercilla G, Roque C, Juan C, Mena A, Preu B, Van Rooij D, Rebesco M, Brackenridge R, Jané G, Gómez-Ballesteros M, Stow D (2020) Contourites along the Iberian continental margins: conceptual and economic implications. In: McClay K, Hammerstein J (eds) Passive margins: tectonics, sedimentation, and magmatism (Vol 476, pp. 403–436). Geological Society London Special Publications

  • Llave E, Hernández-Molina J, Somoza L, Stow D, Díaz Del Río V (2007) Quaternary evolution of the contourite depositional system in the Gulf of Cádiz. Geol Soc London Special Publ 276:49–79

    Google Scholar 

  • Lo Iacono C, Gràcia E, Zaniboni F, Pagnoni G, Tinti S, Bartolomé R, Masson DG, Wynn R, Lourenço N, Pinto Abreu M, Dañobeitia J, Zitellini N (2012) Large, deepwater slope failures: implications for landslide-generated tsunamis. Geology 40(10):931–934. https://doi.org/10.1130/G33446.1

    Article  Google Scholar 

  • Locat J (2001) Instabilities along ocean margins: a geomorphological and geotechnical perspective. Mar Pet Geol 18:503–512

    Google Scholar 

  • Locat J, Lee H (2002) Submarine landslides: advances and challenges. Canadian Geotech J 39:193–212

    Google Scholar 

  • Løvholt F, Schulten I, Mosher D, Harbitz C, Krastel S (2019) Modelling the 1929 grand banks slump and landslide tsunami. Geol Soc London Special Publ 477(1):315–331. https://doi.org/10.1144/SP477.28

    Article  Google Scholar 

  • Masson D, Harbitz C, Wynn R, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans R Soc London 364:2009–2039

    CAS  Google Scholar 

  • McAdoo B, Capone M, Minder J (2004) Seafloor geomorphology of convergent margins: implications for Cascadia seismic hazard. Tectonics 23:TC6008. https://doi.org/10.1029/2003TC001570

    Article  Google Scholar 

  • McAdoo B, Pratson L, Orange D (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136

    Google Scholar 

  • Maldonado A, Somoza L, Pallarés L (1999) The Betic orogen and the Iberian-African boundary in the Gulf of Cadiz: geological evolution (central north Atlantic). Mar Geol 155:9–43

    Google Scholar 

  • Martorelli E, Bosman A, Casalbore D, Falcini F (2016) Interaction of downslope and alongslope processes off Capo Vaticano (southern Tyrrhenian Sea, Italy), with particular reference to contourite-related landslides. Mar Geol 378:43–55

    Google Scholar 

  • Melo C, Sharma S (2004) Seismic coefficients for pseudostatic slope analysis. In: 13th world conference on earthquake engineering vancouver, B.C., Canada. Paper No. 369: 1–15

  • Mencaroni D, Llopart J, Urgeles R, Lafuerza S, Gràcia E, Le Friant A, Urlaub M (2020) From gravity cores to overpressure history: the importance of measured sediment physical properties inhydrogeological models. In: Georgiopoulou A, Amy L, Benetti S, Chaytor J, Clare M, Gamboa D, Haughton P, Moernaut J, Mountjoy J (eds) Subaqueous mass movements and their consequences: advances in process understanding, monitoring and hazard assessments. Geological Society, Special Publications, London, 500, pp 289–300

  • Mestdagh T, Lobo FJ, Llave E, Hernández-Molina J, García-Ledesma A, Puga-Bernabéu A, Fernández-Salas L-M, Van Rooij D (2020) Late Quaternary multigenetic processes and products on the northern Gulf of Cadiz upper continental slope (SW Iberian Peninsula). Mar Geol 427:106214. https://doi.org/10.1016/j.margeo.2020.106214

    Article  Google Scholar 

  • Minning M, Hebbeln D, Hensen C, Kopf A (2006) Geotechnical and geochemical investigations of the Marquês de Pombal landslide at the Portuguese continental margin. Norw J Geol 86:187–198

    Google Scholar 

  • Miramontes E, Garziglia S, Sultan N, Jouet G, Cattaneo A (2018) Morphological control of slope instability in contourites: a geotechnical approach. Landslides 15:1085–1095. https://doi.org/10.1007/s10346-018-0956-6

    Article  Google Scholar 

  • Morgenstern N, Price V (1965) The analysis of the stability of general slip surfaces. Geotechnique 15(1):79–93

    Google Scholar 

  • Morris D (1983) A Note on Earthquake-Induced Liquefaction. Géotechnique 33(4):451–454

    Google Scholar 

  • Mosher D, Campbell D, Gardner J, Piper D, Chaytor J, Rebesco M (2017) The role of deep-water sedimentary processes in shaping a continental margin: the Northwest Atlantic. Mar Geol 393:245–259

    Google Scholar 

  • Mougenot D (1989) Geologia da Margem Portuguesa. Ph.D. Thesis, Université Pierre et Marie Curie, Lisbon

  • Neres M, Terrinha P, Custódio S, Silva SM, Luis J, Miranda JM (2018) Geophysical evidence for a magmatic intrusion in the ocean-continent transition of the SW Iberia margin. Tectonophysics 744:118–133. https://doi.org/10.1016/j.tecto.2018.06.014

    Article  Google Scholar 

  • Ng ZL, Hernández-Molina FJ, Duarte D, Sierro F, Ledesma S, Rogerson M, Llave E, Roque C, Manar MA (2021) Latest miocene restriction of the Mediterranean outflow water : a perspective from the Gulf of Cádiz. Geo-Mar Lett. https://doi.org/10.1007/s00367-021-00693-9

    Article  Google Scholar 

  • Omira R, Ramalho I, Terrinha P, Baptista MA, Batista L, Zitellini N (2016) Deep-water seamounts, a potential source of tsunami generated by landslides? The Hirondelle Seamount, NE Atlantic. Mar Geol 379:267–280

    Google Scholar 

  • Pereira R, Alves T (2011) Margin segmentation prior to continental break-up: a seismic–stratigraphic record of multiphased rifting in the North Atlantic (Southwest Iberia). Tectonophysics 505(1):17–34

    Google Scholar 

  • Pereira R, Alves T (2013) Crustal deformation and submarine canyon incision in a Meso-Cenozoic first-order transfer zone (SW Iberia, North Atlantic Ocean). Tectonophysics 601:148–162

    Google Scholar 

  • Pinheiro L, Wilson R, Pena dos Reis R, Whitmarsh R, Ribeiro A (1996) The Western Iberia Margin: a geophysical and geological overview. In: Proceedings of the ocean drilling program, scientific results, pp 3–23

  • Piper D, Cochonat P, Morrison M (1999) The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology 46:79–97

    Google Scholar 

  • Piper D, Shor A, Farre J, O’Donnel S, Jacobi R (1985) Sediment slides around the epicenter of the 1929 Grand Banks earthquake. Geology 13:538–541

    Google Scholar 

  • Preu B, Hernández-Molina FJ, Violante R, Piola AR, Paterlini CM, Schwenk T, Voigt I, Krastel S, Spiess V (2013) Morphosedimentary and hydrographic features of the northern Argentine margin: the interplay between erosive, depositional and gravitational processes and its conceptual implications. Deep-Sea Res I 75:157–174

    Google Scholar 

  • Puzrin A, Gray T, Hill A (2015) Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides. Proc R Soc A 471:20140772. https://doi.org/10.1098/rspa.2014.0772

    Article  Google Scholar 

  • Rebesco M, Hernández-Molina FJ, Van Rooij D, Wåhlin A (2014) Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Mar Geol 352:111–154

    Google Scholar 

  • Rodrigues S, Roque C, Hernández-Molina FJ, Llave E, Terrinha P (2020) The sines contourite depositional system along the SW Portuguese margin: onset, evolution, and conceptual implications. Mar Geol 430:106357

    Google Scholar 

  • Roque C, Hernández-Molina FJ, Madureira P, Quartau R, Magalhães V, Brito P, Vásquez J-T, Somoza L (2022) Interplay of deep-marine sedimentary processes with seafloor morphology offshore Madeira Island (Central NE-Atlantic). Mar Geol 443:106675. https://doi.org/10.1016/j.margeo.2021.106675

    Article  Google Scholar 

  • Sartori R, Torelli L, Zitellini N, Peis D, Lodolo E (1994) Eastern segment of the Azores-Gibraltar Line (Central-eastern Atlantic): an oceanic plate boundary with diffuse compressional deformation. Geology 22:555–558

    Google Scholar 

  • Sawyer D, DeVore J (2015) Elevated shear strength of sediments on active margins: Evidence for seismic strengthening. Geophys Res Lett 42(10):216–210. https://doi.org/10.1002/2015GL066603

    Article  Google Scholar 

  • Sawyer D, Reece R, Gulick S, Lenz B (2017) Submarine landslide and tsunami hazards offshore southern Alaska: seismic strengthening versus rapid sedimentation: submarine landslide hazards Off Alaska. Geophys Res Lett 44(16):8435–8442. https://doi.org/10.1002/2017GL074537

    Article  Google Scholar 

  • Serra N, Ambar I (2002) Eddy generation in the Mediterranean undercurrent. Deep-Sea Res II 49:4225–4243

    Google Scholar 

  • Silva S, Terrinha P, Matias L, Duarte J, Roque C, Ranero C, Geissler W, Zitellini N (2017) Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults? Tectonophysics 717:226–241

    Google Scholar 

  • Skempton AW (1957) Discussion: The Planning and Design of New Hong Kong Airport. Proceedings, Institute of Civil Engineers London 7: 305–307

  • Srivastava S, Schouten H, Roest W, Klitgord K, Kovacs L, Verhoef J, Macnab R (1990) Iberian Plate kinematics—a jumping plate boundary between Eurasia and Africa. Nature 344:756–759

    Google Scholar 

  • Stich D, de Mancilla FL, Pondrelli S, Morales J (2007) Source analysis of the February 12th 2007, Mw 6.0 Horseshoe earthquake: implications for the 1755 Lisbon earthquake. Geophys Res Lett. https://doi.org/10.1029/2007GL030012

    Article  Google Scholar 

  • Stich D, Martín R, Morales J (2010) Moment tensor inversion for Iberia-Maghreb earthquakes 2005–2008. Tectonophysics 483:390–398

    Google Scholar 

  • Stigall J, Dugan B (2010) Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico. J Geophys Res 115:B04101. https://doi.org/10.1029/2009JB006848

    Article  Google Scholar 

  • Stow DA, Faugères JC, Howe JA, Pudsey CJ, Viana A (2002) Bottom currents, contourites, and deep-sea sediment drifts: current state-of-the-art. Geological Society, London, Memoirs 22(1):7–20

    Google Scholar 

  • Stow D, Hernández-Molina J, Alvarez-Zarikian C, Expedition 339 Scientists (2013) Expedition 339 summary. In IODP (ed.) In: Proceedings of the integrated ocean drilling program) (Vol 339)

  • Strozyk F, Strasser M, Förster A, Kopf A, Huhn K (2010) Slope failure repetition in active margin environments: constraints from submarine landslides in the Hellenic forearc, eastern Mediterranean. J Geophys Res Solid Earth. https://doi.org/10.1029/2009JB006841.B08103

    Article  Google Scholar 

  • Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg J, Long D, Mienert J, Trincardi F, Urgeles R, Vorren T, Wilson C (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321

    Google Scholar 

  • Tappin DR, Matsumoto T, Watts P, Satake K, McMurtry GM, Matsuyama M, Lafoy Y, Tsuji Y, Kanamatsu T, Lus W, Iwabuchi Y, Yeh H, Matsumotu Y, Nakamura M, Mahoi M, Hill P, Crook K, Anton L, Walsh J (1999) Sediment slump likely caused 1998 Papua New Guinea tsunami. EOS Trans Am Geophys Union 80(30):329–340

    Google Scholar 

  • Teixeira M, Terrinha P, Roque C, Rosa M, Ercilla G, Casas D (2019) Interaction of alongslope and downslope processes in the Alentejo Margin (SW Iberia)—Implications on slope stability. Mar Geol 410:88–108

    Google Scholar 

  • Teixeira M, Terrinha P, Roque C, Voelker AHL, Silva P, Salgueiro E, Abrantes F, Naughton F, Mena A, Ercilla G, Casas D (2020) The Late Pleistocene-Holocene sedimentary evolution of the Sines Contourite Drift (SW Portuguese Margin): a multiproxy approach. Sed Geol. https://doi.org/10.1016/j.sedgeo.2020.105737

    Article  Google Scholar 

  • Teixeira M, Viana da Fonseca A, Cordeiro D, Terrinha P, Roque C (2022) Geotechnical properties of Sines Contourite Drift sediments: their contribution to submarine landslide susceptibility. Bull Eng Geol Env 81:376. https://doi.org/10.1007/s10064-022-02873-y

    Article  Google Scholar 

  • ten Brink US, Andrews BD, Miller N (2016) Seismicity and sedimentation rate effects on submarine slope stability. Geology 44(7):563–566. https://doi.org/10.1130/G37866.1

    Article  Google Scholar 

  • Terrinha P, Duarte H, Brito P, Noiva J, Ribeiro C, Omira R, Baptista MA, Miranda M, Magalhães V, Roque C (2019a) The Tagus River delta landslide, off Lisbon, Portugal. Implic Mar Geo-Hazards Mar Geol 416:105983. https://doi.org/10.1016/j.margeo.2019.105983

    Article  Google Scholar 

  • Terrinha P, Pinheiro L, Henriet J, Matias L, Ivanov M, Monteiro J, Akhmetzhanov A, Volkonskaya A, Cunha T, Shaskin P, Rovere M (2003) Tsunamigenic–seismogenic structures, neotectonics, sedimentary processes, and slope instability on the southwest Portuguese Margin. Mar Geol 195(1–4):55–73

    Google Scholar 

  • Terrinha P, Ramos A, Neres M, Valadares V, Duarte J, Martínez-Loriente S, Silva S, Mata J, Kullberg J, Casas-Sainz A, Matias L, Fernández O, Anton Muñoz J, Ribeiro C, Font E, Neves C, Roque C, Rosas F, Pinheiro L, Bartolomé R, Sallarès V, Magalhães V, Medialdea T, Somoza L, Gràcia E, Hensen C, Gutscher MA, Ribeiro A, Zitellini N (2019b) The alpine orogeny in the West and Southwest Iberia Margins. In: Quesada C, Oliveira J (Eds), The geology of Iberia: a geodynamic approach, regional geology reviews, pp 487–505

  • Terzaghi K, Peck R, Mesri G (1996) Soil Mechanics in engineering practice, 3rd edn. Wiley, New York

    Google Scholar 

  • Urlaub M, Talling P, Zervos A, Masson D (2015) What causes large submarine landslides on low gradient (< 2°) continental slopes with slow (~0.15 m/kyr) sediment accumulation? J Geophys Res Solid Earth 120:6722–6739. https://doi.org/10.1002/2015JB012347

    Article  Google Scholar 

  • Urgeles R, Leynaud D, Lastras G, Canals M, Mienert J (2006) Back-analysis and failure mechanisms of a large submarine slide on the Ebro slope NW Mediterranean. Mar Geol 226(3–4):185–206. https://doi.org/10.1016/j.margeo.2005.10.004

    Article  Google Scholar 

  • Urgeles R, Locat J, Lee HJ, Martin F (2002) The Saguenay Fjord, Quebec, Canada: integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment. Mar Geol 185:319–340

    Google Scholar 

  • Urgeles R, Locat J, Sawyer D, Flemings P, Dugan B, Binh N (2010) History of pore pressure build-up and slope instability in mud-dominated sediments of Ursa Basin, Gulf of Mexico continental slope. In: Mosher D, Shipp R, Moscardelli L, Chaytor J, Baxter C, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Springer, Dordrecht

    Google Scholar 

  • Vanney J-R, Mougenot D (1981) La plateforme continental du Portugal et les provinces adjacentes: analyse géomorphologique. Memórias Serviços Geológicos De Portugal 28:145

    Google Scholar 

  • Veludo I, Dias N, Fonseca P, Matias L, Carrilho F, Haberland C, Villaseñor A (2017) Crustal seismic structure beneath Portugal and southern Galicia (Western Iberia) and the role of variscan inheritance. Tectonophysics 717:645664

    Google Scholar 

  • Vizcaino A, Gràcia E, Pallàs R, Garcia-Orellana J, Escutia C, Casas D, Willmott V, Diez S, Asioli A, Dañobeitia J (2006) Sedimentology, physical properties and ages of mass-transport deposits associated to the Marquês de Pombal Fault, southwest Portuguese margin. Norw J Geol 86:177–186

    Google Scholar 

  • Wiemer G, Moernaut J, Stark N, Kempf P, De Batist M, Pino M, Urrutia R, Ladrón de Guevara B, Strasser M, Kopf A (2015) The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. Int J Earth Sci 104(5):1439–1457

    CAS  Google Scholar 

  • Yenes M, Monetrrubio S, Nespereira J, Casas D (2020) Apparent overconsolidation and its implications for submarine landslides. Eng Geol. https://doi.org/10.1016/j.enggeo.2019.105375

    Article  Google Scholar 

  • Yenes M, Casas D, Nespereira J, López-González N, Casalbore D, Monterrubio S, Alonso B, Ercilla G, Juan C, Bárcenas P, Palomino D, Mata P, Martínez-Díaz P, Pérez N, Vázquez JT, Estrada F, Azpiroz-Zabala M, Teixeira M (2021) The Guadiaro-Baños contourite drifts (SW Mediterranean). A geotechnical approach for its stability analysis. Mar Geol 437:106505. https://doi.org/10.1016/j.margeo.2021.106505

    Article  Google Scholar 

  • Zenk W, Armi L (1990) The complex spreading pattern of mediterranean water off the Portuguese continental slope. Deep-Sea Res 37:1805–1823

    Google Scholar 

  • Zitellini N, Chierici F, Sartori R, Torelli L (1999) The tectonic source of the 1755 Lisbon earthquake and tsunami. Annals of Geophys 42: 49–55

    Google Scholar 

  • Zitellini N, Gràcia E, Matias L, Terrinha P, Abreu MA, DeAlteriis G, Henriet JP, Dañobeitia JJ, Masson DG, Mulder T, Ramella R, Somoza L, Diez S (2009) The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. Earth Planet Sci Lett 280(1–4):13–50

    CAS  Google Scholar 

Download references

Acknowledgements

This work was done in the scope of the MAGICLAND–MArine Geohazards InduCed by underwater LANDslides in the SW Iberian Margin (PTDC/CTA-GEO/30381/2017) project, funded by the Fundação para a Ciência e Tecnologia (FCT), Portugal. The projects CONDRIBER (FCT-PTDC/GEO/4430/2012) and MOWER (CTM2012-39599-C03-03) are acknowledged for providing data, and inGravitas project (PID2022-138258OB-I00) is acknowledged as well. The authors also acknowledge funding by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds (PIDDAC)–UIDB/50019/2020. The captain and crew of R/V Sarmiento de Gamboa and NRP/Gago Coutinho are acknowledged for their assistance during the MOWER and CONDRIBER cruises. Dina Vales, from IPMA, is thanked for making seismicity data available. Landmark Graphic Corporation is thanked due to Landmark University Grant Program. ESRI is thanked for the student license of ArcMap©. The authors from ICM-CSIC thank for the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S). The authors gratefully acknowledge the Editor, Professor James Goff and the two anonymous reviewers for their constructive comments and suggestions.

Funding

This work was supported by MAGICLAND—MArine Geohazards InduCed by underwater LANDslides in the SW Iberian Margin (PTDC/CTA-GEO/30381/2017) project, funded by the Fundação para a Ciência e Tecnologia (FCT), Portugal. The projects CONDRIBER (FCT-PTDC/GEO/4430/2012) and MAGICLAND (PTDC/CTA-GEO/30381/2017) funded laboratory testing. The authors acknowledge funding by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds (PIDDAC)—UIDB/50019/2020.

Author information

Authors and Affiliations

Authors

Contributions

MT: Manuscript conceptualization, Investigation, Methodology, Formal analysis, Writing—original draft, Writing—review and editing. CR: Funding acquisition, writing—review and editing. RO: Funding acquisition, writing–review and editing. FM: Investigation, Methodology, writing—review and editing. DG: Investigation, writing—review and editing. PT: Writing—review and editing. GE: Writing—review and editing. MY: Methodology, writing—review and editing. AM: Writing—review and editing; DC: Writing—review and editing.

Corresponding author

Correspondence to Manuel Teixeira.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, M., Roque, C., Omira, R. et al. Submarine landslide hazard in the Sines Contourite Drift, SW Iberia: slope instability analysis under static and transient conditions. Nat Hazards 120, 3505–3531 (2024). https://doi.org/10.1007/s11069-023-06340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-06340-z

Keywords

Navigation