Skip to main content

Advertisement

Log in

Integration of extreme learning machines with CEEMDAN and VMD techniques in the prediction of the multiscalar standardized runoff index and standardized precipitation evapotranspiration index

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Accurate prediction of droughts is vital for effectively managing droughts, assessing drought risks and impacts, drought early warning systems, drought preparedness, and mitigation policies. This study integrated the extreme learning machines algorithm into the complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) techniques to predict 1-month lead time meteorological and hydrological droughts. Standardized precipitation evapotranspiration index (SPEI) and standardized runoff index (SRI) values were calculated as meteorological and hydrological drought indicators, respectively. The effects of the previous SRI and SPEI values were evaluated to estimate 3- and 12-month SRI-based hydrological droughts. The previous SPEI values were used to estimate SPEI values. The cross-correlation matrix and partial correlation function were used to determine the model input combinations. It is recommended to input delayed drought indices up to 3 months as input to the model for predicting droughts with a lead time of 1 month. The performance of the models was compared with statistical indicators such as coefficient of determination, mean square error, and mean absolute error, and scatter diagram and violin box plot. As a result of the analyses, it was determined that decomposition techniques improved the drought prediction accuracy of the extreme learning machines (ELM) model. The highest prediction performance (R2: 0.926, MSE: 0.084, and MAE: 0.229) was achieved in the prediction of SRI12 (t + 1) values using the VMD-ELM hybrid approach with the input combination of SRI12 (t) and SRI12 (t − 1) values at the Hinis station. In addition, it has been revealed that the VMD decomposition method provides more successful separation than CEEMDAN in both SRI and SPEI estimations. The study outputs are essential in managing water resources, hydroelectric energy production, sizing of water structures, and transboundary waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Available from the corresponding author upon reasonable request.

References

Download references

Acknowledgements

The author thanks the general directorate for state hydraulic works and general directorate of meteorology for the data provided.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The author completes the work independently.

Corresponding author

Correspondence to Okan Mert Katipoğlu.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Ethical approval

The manuscript complies with all the ethical requirements. The paper was not published in any journal.

Consent for publications

The author confirms that the work described has not been published before, and it is not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katipoğlu, O.M. Integration of extreme learning machines with CEEMDAN and VMD techniques in the prediction of the multiscalar standardized runoff index and standardized precipitation evapotranspiration index. Nat Hazards 120, 825–849 (2024). https://doi.org/10.1007/s11069-023-06238-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-06238-w

Keywords

Navigation