Skip to main content

Advertisement

Log in

Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Muskingum model is one of the most widely used hydrological methods in flood routing, and calibrating its parameters is an ongoing research challenge. We optimized Muskingum model parameters to accurately simulate hourly output hydrographs of three flood-prone rivers in the Karun watershed, Iran. We evaluated model performance using the correlation coefficient (CC), the ratio of the root-mean-square error to the standard deviation of measured data (PSR), Nash–Sutcliffe efficiency (NSE), and index of agreement (d). The results show that the gray wolf optimization (GWO) algorithm, with CC = 0.99455, PSR = 0.155, NSE = 0.9757, and d = 0.9945, performed better in simulating the flood in the first study area. The Kalman filter (KF) improved these measures by + 0.00516, − 0.1246, + 0.02328, and + 0.00527, respectively. Our findings for the second flood show that the gravitational search algorithm (GSA), with CC = 0.9941, PSR = 0.1669, NSE = 0.9721, and d = 0.9921, performed better than all other algorithms. The Kalman filter enhanced each of the measures by + 0.00178, − 0.0175, + 0.0055 and + 0.0021, respectively. The gravitational search algorithm also performed best in the third flood, with CC = 0.9786, PSR = 0.2604, NSE = 0.9321, and d = 0.9848, and with improvements in accuracy using the Kalman filter of + 0.01081, − 0.0971, + 0.394, and + 0.0078, respectively. We recommend the use of GWO-KF for flood routing studies with flood events of high volumes and hydrograph base times, and use of GSA-KF for studies with flood events of high volumes and hydrograph base times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All the data and materials as well as software application or custom code support our published claims and comply with field standards.

References

  • Afshar A, Khosravi M, Ostadrahimi L, Afshar A (2020) Reliability-based multi-objective optimum design of nonlinear conjunctive use problem; cyclic storage system approach. J Hydrol 588:125109

    Article  Google Scholar 

  • Afzali S (2016) Variable-parameter Muskingum model. Iran J Sci Technol Trans Civ Eng 40(1):59–68

    Article  Google Scholar 

  • Ashrafi SM, Moradpoor T (2020) A conceptual framework of a surrogate-based quality-quantity decision support system (Q2DSS) for water resources systems. J Hydraul Struct 6(1):77–89

    Google Scholar 

  • Avellaneda P, Ficklin D, Lowry C, Knouft J, Hall D (2020) Improving hydrological models with the assimilation of crowdsourced data. Water Resour Res 56(5):e2019WR26325

    Article  Google Scholar 

  • Badfar M, Barati R, Dogan E, Tayfur G (2021) Reverse flood routing in rivers using linear and nonlinear muskingum models. J Hydrol Eng 26(6):04021018

    Article  Google Scholar 

  • Barati R (2011) Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. J Hydrol Eng 16(11):946–954

    Article  Google Scholar 

  • Barati R (2013) Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J Civ Eng 17(5):1139–1148

    Article  Google Scholar 

  • Bazargan J, Norouzi H (2018) Investigation the effect of using variable values for the parameters of the linear Muskingum method using the particle swarm algorithm (PSO). Water Resour Manage 32(14):4763–4777

    Article  Google Scholar 

  • Bolt BA, Horn W, MacDonald GA, Scott R (2013) Geological hazards: earthquakes-tsunamis-volcanoes-avalanches-landslides-floods. Springer, Cham

    Google Scholar 

  • Bouttier F, Courtier P (2002) Data assimilation concepts and methods March 1999. Meteorol Train Course Lect Ser ECMWF 718:59

    Google Scholar 

  • Bui DT, Khosravi K, Karimi M, Busico G, Khozani ZS, Nguyen H, Mastrocicco M, Tedesco D, Cuoco E, Kazakis N (2020) Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm. Sci Total Environ 715:136836

    Article  Google Scholar 

  • Christelis V, Mantoglou A (2019) Pumping optimization of coastal aquifers using seawater intrusion models of variable-fidelity and evolutionary algorithms. Water Resour Manage 33(2):555–568

    Article  Google Scholar 

  • Chu H-J, Chang L-C (2009) Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. J Hydrol Eng 14(9):1024–1027

    Article  Google Scholar 

  • Coronel A, Berres S, Lagos R (2019) Calibration of a sedimentation model through a continuous genetic algorithm. Inverse Probl Sci Eng 27(9):1263–1278

    Article  Google Scholar 

  • Das A (2004) Parameter estimation for Muskingum models. J Irrig Drain Eng 130(2):140–147

    Article  Google Scholar 

  • Das A (2009) Reverse stream flow routing by using Muskingum models. Sadhana 34(3):483–499

    Article  Google Scholar 

  • Dhargupta S, Ghosh M, Mirjalili S, Sarkar R (2020) Selective opposition based grey wolf optimization. Expert Syst Appl 151:113389

    Article  Google Scholar 

  • Dragomiretskiy K, Zosso D (2013) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

    Article  Google Scholar 

  • EM-DAT. (2020). EM-DAT: The International Disaster Database (CRED, accessed 26 March 2020). CRED. http://www.emdat.be/

  • Erdal D, Cirpka O (2016) Joint inference of groundwater–recharge and hydraulic–conductivity fields from head data using the ensemble Kalman filter. Hydrol Earth Syst Sci 20(1):555–569

    Article  Google Scholar 

  • Farahani N, Karami H, Farzin S, Ehteram M, Kisi O, El Shafie A (2019) A new method for flood routing utilizing four-parameter nonlinear Muskingum and shark algorithm. Water Resour Manage 33(14):4879–4893

    Article  Google Scholar 

  • Geem ZW (2006) Parameter estimation for the nonlinear Muskingum model using the BFGS technique. J Irrig Drain Eng 132(5):474–478

    Article  Google Scholar 

  • Geem ZW (2011) Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search. J Hydrol Eng 16(8):684–688

    Article  Google Scholar 

  • Geem ZW, Sim K-B (2010) Parameter-setting-free harmony search algorithm. Appl Math Comput 217(8):3881–3889

    Google Scholar 

  • Gholami A, Seyedali SM, Ansari HR (2020) Estimation of shear wave velocity from post-stack seismic data through committee machine with cuckoo search optimized intelligence models. J Petrol Sci Eng 189:106939

    Article  Google Scholar 

  • Gill MA (1978) Flood routing by the Muskingum method. J Hydrol 36(3–4):353–363

    Article  Google Scholar 

  • Guo L, Meng Z, Sun Y, Wang L (2016) Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers Manage 108:520–528

    Article  Google Scholar 

  • Guo W, Liu T, Dai F, Xu P (2020) An improved whale optimization algorithm for forecasting water resources demand. Appl Soft Comput 86:105925

    Article  Google Scholar 

  • Hamedi F, Bozorg-Haddad O, Pazoki M, Asgari H-R, Parsa M, Loáiciga HA (2016) Parameter estimation of extended nonlinear Muskingum models with the weed optimization algorithm. J Irrig Drain Eng 142(12):04016059

    Article  Google Scholar 

  • Hirpurkar P, Ghare AD (2015) Parameter estimation for the nonlinear forms of the Muskingum model. J Hydrol Eng 20(8):04014085

    Article  Google Scholar 

  • Hosseini SM (2009) Application of spreadsheets in developing flexible multiple-reach and multiple-branch methods of Muskingum flood routing. Comput Appl Eng Educ 17(4):448–454

    Article  Google Scholar 

  • Huang C, Li Y, Yao X (2019) A survey of automatic parameter tuning methods for metaheuristics. IEEE Trans Evol Comput 24(2):201–216

    Article  Google Scholar 

  • Joshi SK, Bansal JC (2020) Parameter tuning for meta-heuristics. Knowl-Based Syst 189:105094

    Article  Google Scholar 

  • Jung D, Lansey K (2015) Water distribution system burst detection using a nonlinear Kalman filter. J Water Resour Plan Manag 141(5):04014070

    Article  Google Scholar 

  • Kang, L., & Zhou, L. (2018). Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver. In: IOP Conference series: earth and environmental science,

  • Karami H, Mousavi SF, Farzin S, Ehteram M, Singh VP, Kisi O (2018) Improved krill algorithm for reservoir operation. Water Resour Manage 32(10):3353–3372

    Article  Google Scholar 

  • Khaki M, Ait-El-Fquih B, Hoteit I (2020) Calibrating land hydrological models and enhancing their forecasting skills using an ensemble Kalman filter with one-step-ahead smoothing. J Hydrol 584:124708

    Article  Google Scholar 

  • Khorrami Z, Banihashemi MA (2019) Numerical simulation of sedimentation process in reservoirs and development of a non-coupled algorithm to improve long-term modeling. Int J Sedim Res 34(3):279–294

    Article  Google Scholar 

  • Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the nonlinear muskingum model using harmony search 1. JAWRA J Am Water Resour As 37(5):1131–1138

    Article  Google Scholar 

  • Lai C, Shao Q, Chen X, Wang Z, Zhou X, Yang B, Zhang L (2016) Flood risk zoning using a rule mining based on ant colony algorithm. J Hydrol 542:268–280

    Article  Google Scholar 

  • Latt ZZ (2015) Application of feedforward artificial neural network in Muskingum flood routing: a black-box forecasting approach for a natural river system. Water Resour Manage 29(14):4995–5014

    Article  Google Scholar 

  • Lee H, Shen H, Noh SJ, Kim S, Seo D-J, Zhang Y (2019) Improving flood forecasting using conditional bias-penalized ensemble Kalman filter. J Hydrol 575:596–611

    Article  Google Scholar 

  • Luo J, Xie J (2010) Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm. J Hydrol Eng 15(10):844–851

    Article  Google Scholar 

  • Mazzoleni M, Noh SJ, Lee H, Liu Y, Seo D-J, Amaranto A, Alfonso L, Solomatine DP (2018) Real-time assimilation of streamflow observations into a hydrological routing model: effects of model structures and updating methods. Hydrol Sci J 63(3):386–407

    Article  Google Scholar 

  • McCarthy, G. T. (1938). The unit hydrograph and flood routing. In: Proceedings of Conference of North Atlantic Division, US Army Corps of Engineers, 1938,

  • Mehdizadeh S, Mohammadi B, Pham QB, Khoi DN, Linh NTT (2020) Implementing novel hybrid models to improve indirect measurement of the daily soil temperature: elman neural network coupled with gravitational search algorithm and ant colony optimization. Measurement 165:108127

    Article  Google Scholar 

  • Miao Y, Zhao M, Makis V, Lin J (2019) Optimal swarm decomposition with whale optimization algorithm for weak feature extraction from multicomponent modulation signal. Mech Syst Signal Process 122:673–691

    Article  Google Scholar 

  • Mohammadi A, Kamran KV, Karimzadeh S, Shahabi H, Al-Ansari N (2020) Flood detection and susceptibility mapping using sentinel-1 time series, alternating decision trees, and bag-adtree models. Complexity 2020:1–2

    Article  Google Scholar 

  • Mohan S (1997) Parameter estimation of nonlinear Muskingum models using genetic algorithm. J Hydraul Eng 123(2):137–142

    Article  Google Scholar 

  • Munier S, Aires F (2018) A new global method of satellite dataset merging and quality characterization constrained by the terrestrial water budget. Remote Sens Environ 205:119–130

    Article  Google Scholar 

  • Naghibi SA, Ahmadi K, Daneshi A (2017) Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour Manage 31(9):2761–2775

    Article  Google Scholar 

  • Naghibi SA, Vafakhah M, Hashemi H, Pradhan B, Alavi SJ (2020) Water resources management through flood spreading project suitability mapping using frequency ratio, k-nearest neighbours, and random forest algorithms. Nat Resour Res 29(3):1915–1933

    Article  Google Scholar 

  • Nasseri M, Moeini A, Tabesh M (2011) Forecasting monthly urban water demand using extended Kalman filter and genetic programming. Expert Syst Appl 38(6):7387–7395

    Article  Google Scholar 

  • Nema MK, Thakur HP, Upreti H, Jain SK, Mishra P, Thayyen RJ, Singh P, Jain SK (2022) Estimation of evapotranspiration in lesser Himalayas using remote sensing based surface energy balance algorithm. Geocarto Int 37(3):841–859

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2016) Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model. Water Resour Manage 30(13):4713–4730

    Article  Google Scholar 

  • Niazkar M, Zakwan M (2022) Parameter estimation of a new four-parameter Muskingum flood routing model. In Computers in Earth and Environmental Sciences. Elsevier, 337–349

  • Norouzi H, Bazargan J (2020) Flood routing by linear Muskingum method using two basic floods data using particle swarm optimization (PSO) algorithm. Water Supply 20(5):1897–1908

    Article  Google Scholar 

  • Okeya I, Kapelan Z, Hutton C, Naga D (2014) Online burst detection in a water distribution system using the Kalman filter and hydraulic modelling. Procedia Eng 89:418–427

    Article  Google Scholar 

  • Panahi M, Jaafari A, Shirzadi A, Shahabi H, Rahmati O, Omidvar E, Lee S, Bui DT (2021) Deep learning neural networks for spatially explicit prediction of flash flood probability. Geosci Front 12(3):101076

    Article  Google Scholar 

  • Park S, Kim Y, Kim K, Han K (2017) Development of computational algorithms for pump operations and their applications to the system dynamics modelling of a water supply system. Civ Eng Environ Syst 34(2):162–183

    Article  Google Scholar 

  • Pei X, Sun Y, Ren Y (2020) Demand estimation of water resources via bat algorithm. Int J Wireless Mobile Comput 18(1):16–21

    Article  Google Scholar 

  • Peng H, Zhu W, Deng C, Wu Z (2021) Enhancing firefly algorithm with courtship learning. Inf Sci 543:18–42

    Article  Google Scholar 

  • Priyadarshi N, Bhaskar MS, Padmanaban S, Blaabjerg F, Azam F (2020) New CUK–SEPIC converter based photovoltaic power system with hybrid GSA–PSO algorithm employing MPPT for water pumping applications. IET Power Electron 13(13):2824–2830

    Article  Google Scholar 

  • Pykhtin A, Gostev A (2019) Model, algorithm and computer application for automated selection of varieties and hybrids of grain crops. J Phys Conf Ser 1333(3):032066

    Article  Google Scholar 

  • Qian L, Huanfei Y, Linlin H, Hangjian G, Hongri Z (2020) Real-time correction method of Muskingum model based on Kalman filter. E3S Web Conf 165:06002

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  Google Scholar 

  • Rigatos GG (2012) Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial vehicles. Robot Auton Syst 60(7):978–995

    Article  Google Scholar 

  • Rigatos G, Zhang Q (2009) Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst 160(7):882–904

    Article  Google Scholar 

  • Rodriguez L, Castillo O, Garcia M, Soria J, Valdez F, Melin P (2017) Dynamic simultaneous adaptation of parameters in the grey wolf optimizer using fuzzy logic. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),

  • Schmidt F, Wainwright HM, Faybishenko B, Denham M, Eddy-Dilek C (2018) In situ monitoring of groundwater contamination using the Kalman filter. Environ Sci Technol 52(13):7418–7425

    Article  Google Scholar 

  • Sepahvand R, Safavi HR, Rezaei F (2019) Multi-objective planning for conjunctive use of surface and ground water resources using genetic programming. Water Resour Manage 33(6):2123–2137

    Article  Google Scholar 

  • Seyedpour S, Kirmizakis P, Brennan P, Doherty R, Ricken T (2019) Optimal remediation design and simulation of groundwater flow coupled to contaminant transport using genetic algorithm and radial point collocation method (RPCM). Sci Total Environ 669:389–399

    Article  Google Scholar 

  • Shahabi H, Shirzadi A, Ronoud S, Asadi S, Pham BT, Mansouripour F, Geertsema M, Clague JJ, Bui DT (2021) Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geosci Front 12(3):101100

    Article  Google Scholar 

  • Shahraki J, Sardar Shahraki A, Nouri S (2018) Application of met heuristic algorithm of ant colony optimization in optimal allocation of water resources of Chah-Nime of Sistan under managerial scenarios. Iran J Ecohydrol 5(4):1063–1078

    Google Scholar 

  • Shi Y, Davis KJ, Zhang F, Duffy CJ, Yu X (2014) Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter: a synthetic experiment. Water Resour Res 50(1):706–724

    Article  Google Scholar 

  • Sil BS, Borah A, Deb S, Das B (2016) Development of river flood routing model using non-linear Muskingum equation and excel tool’GANetXL’. J Urban Environ Eng 10(2):214–220

    Article  Google Scholar 

  • Tahershamsi A, Sheikholeslami R (2011) Optimization to identify Muskingum model parameters using imperialist competitive algorithm. Int J Opt Civ Eng 1(3):473–482

    Google Scholar 

  • Tang Q, Schilling OS, Kurtz W, Brunner P, Vereecken H, Hendricks Franssen HJ (2018) Simulating flood-induced riverbed transience using unmanned aerial vehicles, physically based hydrological modeling, and the ensemble kalman filter. Water Resour Res 54(11):9342–9363

    Article  Google Scholar 

  • Tiu BTC, Cruz DE (2017) An MILP model for optimizing water exchanges in eco-industrial parks considering water quality. Resour Conserv Recycl 119:89–96

    Article  Google Scholar 

  • Tung Y-K (1985) River flood routing by nonlinear Muskingum method. J Hydraul Eng 111(12):1447–1460

    Article  Google Scholar 

  • Wang H, Wang W, Cui Z, Zhou X, Zhao J, Li Y (2018) A new dynamic firefly algorithm for demand estimation of water resources. Inf Sci 438:95–106

    Article  Google Scholar 

  • Wang Y, Hong H, Chen W, Li S, Panahi M, Khosravi K, Shirzadi A, Shahabi H, Panahi S, Costache R (2019) Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J Environ Manage 247:712–729

    Article  Google Scholar 

  • Wilson EM (1990) Engineering hydrology. Springer

    Book  Google Scholar 

  • Xu D-M, Qiu L, Chen S-Y (2012) Estimation of nonlinear Muskingum model parameter using differential evolution. J Hydrol Eng 17(2):348–353

    Article  Google Scholar 

  • Yanbing Y, Zhijia L (2013) Application of Ensemble Kalman filter in parameter calibration of Muskingum model. In: Xie Liquan (ed) Hydraulic Engineering. CRC Press, pp 55–58

    Chapter  Google Scholar 

  • Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. 2009 World Congress Nat Biol Inspired Comput (NaBIC). https://doi.org/10.1109/NABIC.2009.5393690

    Article  Google Scholar 

  • Yang R, Hou B, Xiao W, Liang C, Zhang X, Li B, Yu H (2020) The applicability of real-time flood forecasting correction techniques coupled with the Muskingum method. Hydrol Res 51(1):17–29

    Article  Google Scholar 

  • Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. arXiv preprint arXiv:1003.1409.

  • Yoon J, Padmanabhan G (1993) Parameter estimation of linear and nonlinear Muskingum models. J Water Resour Plan Manag 119(5):600–610

    Article  Google Scholar 

  • Yu X, Zhou L, Li X (2019) A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization. Comput Netw 154:73–78

    Article  Google Scholar 

  • Yuan X, Wu X, Tian H, Yuan Y, Adnan RM (2016) Parameter identification of nonlinear Muskingum model with backtracking search algorithm. Water Resour Manage 30(8):2767–2783

    Article  Google Scholar 

  • Zhang Y, Pan M, Wood EF (2016) On creating global gridded terrestrial water budget estimates from satellite remote sensing. Remote sensing and water resources. Springer, Cham, pp 59–78

    Chapter  Google Scholar 

  • Zhao F, Veldkamp TI, Frieler K, Schewe J, Ostberg S, Willner S, Schauberger B, Gosling SN, Schmied HM, Portmann FT (2017) The critical role of the routing scheme in simulating peak river discharge in global hydrological models. Environ Res Lett 12(7):075003

    Article  Google Scholar 

  • Zhou Y, Guo S, Xu C-Y, Chang F-J, Yin J (2020) Improving the reliability of probabilistic multi-step-ahead flood forecasting by fusing unscented Kalman filter with recurrent neural network. Water 12(2):578

    Article  Google Scholar 

  • Zucco G, Tayfur G, Moramarco T (2015) Reverse flood routing in natural channels using genetic algorithm. Water Resour Manage 29(12):4241–4267

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

AMN, AS, AS contributed to conceptualization; AMN, AS, AS, PM, YB contributed to methodology and formal analysis and investigation; AS, AMN, AS, PM, YB, SN, AS, HS, AS-A, CJ, JJC contributed to writing–original draft preparation and writing–review and editing; and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Alireza Moghaddam Nia.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Ethical approval

All authors have read this manuscript and would like to have it considered exclusively for publication in this journal. None of the material related to this manuscript has been published or is under consideration for publication elsewhere, including the internet.

Consent to participate

All authors have read this manuscript and contributed to the study.

Consent to publish

All authors would like to have it considered exclusively for publication in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvati, A., Moghaddam Nia, A., Salajegheh, A. et al. Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches. Nat Hazards 118, 2657–2690 (2023). https://doi.org/10.1007/s11069-023-06113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-06113-8

Keywords

Navigation