Skip to main content

Advertisement

Log in

Debris and mud flows runout assessment: a comparison among empirical geometric equations in the Giampilieri and Briga basins (east Sicily, Italy) affected by the event of October 1, 2009

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Empirical/geometric methods rely on simple geometrical connections between some landslide parameters and the runout distance reached by the displaced material. Despite the extreme simplification of the dynamic of this landslide typology, those methods can provide useful information about the propagation of this shallow and fast landslide typology, joining the reliability of the results with easiness of use. The objective of this work is to compare the efficacy of different geometric relationships for the identification of the runout distances in a debris- and mud-flows-prone test area located in Sicily, southern Italy, where several events were analyzed, and a consistent set of data was collected and processed. Notwithstanding some uncertainties in the methodological approach and not negligible scattering between expected and observed runout distances, the use of such geometric approaches, together with the evaluation of kinematic parameters such as velocity and kinetic energy, can significantly boost the implementation of site-specific analyses for a more detailed definition of landslides susceptibility at a local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

GIS:

Geographic information system

IA:

Initiation area

TP:

Toe point

LEWS:

Landslides early warning system

LIP:

Landslide identification point

LP:

Landslide path

TA:

Track area

SBP:

Slope break point

References

  • Ardizzone F, Basile G, Cardinali M, Casagli N, Del Conte S, Del Ventisette C, Fiorucci F, Garfagnoli F, Gigli G, Guzzetti F, Iovine G, Mondini AC, Moretti S, Panebianco M, Raspini F, Reichenbach P, Rossi M, Tanteri L, Terranova O (2012) Landslide inventory map for the Briga and the Giampilieri catchments NE Sicily, Italy. J Maps 8(2):176–180. https://doi.org/10.1080/17445647.2012.694271

    Article  Google Scholar 

  • Aronica GT, Brigandi G, Morey N (2012) Flash floods and debris flow in the city area of Messina, north-east part of Sicily, Italy in October 2009: the case of the Giampilieri catchment. Nat Hazards Earth Syst Sci 12:1295–1309. https://doi.org/10.5194/nhess-12-1295-2012

    Article  Google Scholar 

  • Ballatore GP, Fierotti G (1967) Carta dei suoli della Sicilia. Soc. Geografica, Via delle Mantellate, 14 – Firenze

  • Basile G, Panebianco M (2011) Experimental alert model for hydrogeological risk: a case study in Sicily. In: Proceedings of the second world landslide forum: 3–7 October 2011, Rome

  • Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90:144–161

    Article  Google Scholar 

  • Carbone S, Messina A, Lentini F (2007) Note illustrative della carta geologica D’italia alla scala 1:50.000, Foglio 601 - MESSINA-REGGIO DI CALABRIA. S.EL.CA. s.r.l., Firenze

  • Casalbore D, Chiocci FL, Scarascia Mugnozza G, Tommasi P, Sposato A (2011) Flash-flood hyperpycnal flows generating shallow-water landslides at Fiumara mouths in Western Messina Strait (Italy). Mar Geophys Res 32:257–271. https://doi.org/10.1007/s11001-011-9128-y

    Article  Google Scholar 

  • Catani F, Segoni S, Falorni G (2010) An empirical geomorphology‐based approach to the spatial prediction of soil thickness at catchment scale. Water Resources Res;46:W05508, https://doi.org/10.1029/2008WR007450

  • Chae BG, Kim WY, Seo YS, Song YS (2006) Development of a method to assess runout distance of debris. IAEG2006 Paper number 176

  • Ciampalini A, Raspini F, Bianchini S, Frodella W, Bardi F, Lagomarsino D, Di Traglia F, Moretti S, Proietti C, Pagliara P, Onori R, Corazza A, Duro A, Basile G, Casagli N (2015) The landslide geodatabase of the Messina Province: a tool in the civil protection emergency cycle. Rend. Online Soc. Geol. It. 35:70–73. https://doi.org/10.3301/ROL.2015.66

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Geology. Canadian Geotechnical Journal

  • Corominas J, Copons R, Vilaplana JM, Altimir J (2003) Amigó J (2003) Integrated landslide susceptibility analysis and hazard assessment in the Principality of Andorra. Nat Hazards 30:421–435

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O et al (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Env 73(2):209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  • Crosta GB, Dal Negro P, Frattini P (2003) Soil slips and debris flows on terraced slopes. Nat Hazard 3:31–42

    Article  Google Scholar 

  • Del Ventisette C, Garfagnoli F, Ciampalini A, Battistini A, Gigli G, Moretti S, Casagli N (2012) An integrated approach to the study of catastrophic debris-flows: geological hazard and human influence. Nat. Hazards Earth Syst. Sci., 12, 2907–2922. www.nat-hazards-earth-syst-sci.net/12/2907/2012/. https://doi.org/10.5194/nhess-12-2907-2012

  • Di Napoli M, Di Martire D, Bausilio G, Calcaterra D, Confuorto P, Firpo M, Pepe G, Cevasco A (2021) Rainfall-induced shallow landslide detachment, transit and runout susceptibility mapping by integrating machine learning techniques and GIS-based approaches. Water 13:488. https://doi.org/10.3390/w13040488

    Article  Google Scholar 

  • Fiorillo F, Diodato N, Meo M (2018) Pagnozzi M (2018) Landslides and flash floods induced by the storm of 22nd November 2011 in northeastern Sicily. Environ Earth Sci 77:602. https://doi.org/10.1007/s12665-018-7788-5

    Article  Google Scholar 

  • García-Ruiz JM, Beguería S, Lorente A, Martí C (2002) Comparing debris flow relationships in the Alps and in the Pyrenees. Instituto Pirenaico de Ecología, Zaragoza, Spain

  • DeGuidi G, Scudero S (2013) Landslide susceptibility assessment in the Peloritani Mts. (Sicily, Italy) and clues for tectonic control of relief processes. Nat Hazards Earth Syst Sci 13:949–963. https://doi.org/10.5194/nhess-13-949-2013

    Article  Google Scholar 

  • Guinau M, Vilajosana I, Vilaplana JM (2007) GIS-based debris flow source and runout susceptibility assessment from DEM data: a case study in NW Nicaragua. Nat Hazards Earth Syst Sci 7:703–716

    Article  Google Scholar 

  • Guo D, Hamada M, He C, Wang Y, Zou Y (2014) 2014 An empirical model for landslide travel distance prediction in Wenchuan earthquake area. Landslides 11:281–291. https://doi.org/10.1007/s10346-013-0444-y

    Article  Google Scholar 

  • Guthrie R, Befus A (2021) Debris flow predictor: an agent-based runout program for shallow landslides. Nat Hazards Earth Syst Sci 21:1029–1049. https://doi.org/10.5194/nhess-21-1029-2021

    Article  Google Scholar 

  • Heim A (1932) Der Bergsturz und Menschenleben. Fretz und Wasmuth Verlag, Zürich

    Google Scholar 

  • Huang Y, Cheng H (2017) A simplified analytical model for run-out prediction of flow slides in municipal solid waste landfills. Landslides 14:99–107. https://doi.org/10.1007/s10346-016-0688-4

    Article  Google Scholar 

  • Hungr O (1995) 1995 A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623. https://doi.org/10.1139/t95-063

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102(2008):152–163

    Article  Google Scholar 

  • Hürlimann M, McArdell BW, Rickli C (2015) Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology 232:20–32. https://doi.org/10.1016/j.geomorph.2014.11.030

    Article  Google Scholar 

  • Jakob M, Hungr O (2005) Debris-flow hazard and related phenomena. Springer, New York

    Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63(2002):301–331

    Article  Google Scholar 

  • Lombardo L, Opitz T, Huser R (2018) Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messin4a disaster. Stoch Env Res Risk Assess. https://doi.org/10.1007/s00477-018-1518-0

    Article  Google Scholar 

  • Lorente A, Beguer S, Bathurst JC, Garcia-Ruiz JM (2003) 2003 Debris flow characteristics and relationships in the Central Spanish Pyrenees. Nat Hazards Earth Syst Sci Copernic Publ Behalf Eur Geosci Union 3(6):683–691

    Article  Google Scholar 

  • Malerba, S Brustia, E, Campolo, D, Comerci, V, Falconi L, Gioè, C, Lucarini, M, Lumaca, S, Puglisi, C, Torre, A, 2015 Landslides inventory in the Messina Municipality area: integration of historical and field survey data Engineering Geology for Society and Territory - Volume 2, Landslide Processes. Springer International Publishing Switzerland, ISBN: 978–3–319–09057–3, pp 967–970

  • McDougall S (2017) 2014 Canadian Geotechnical Colloquium: Landslide runout analysis—current practice and challenges. Can Geotech J 54:605–620. https://doi.org/10.1139/cgj-2016-0104

    Article  Google Scholar 

  • Melo R, Zezere, JL (2017) Debris-flow failure and run-out susceptibility assessment in the Zêzere river basin (Serra da Estrela, Portugal). Revista Brasileira de Geomorfologia. https://doi.org/10.20502/rbg.v18i1.985

  • Napoli R, Crovato C, Falconi L, Gioè C (2015) soil water content and triggering of debris flows in the messina area (Italy): preliminary remarks engineering geology for society and territory – Volume 2, landslide processes. Springer International Publishing Switzerland, ISBN: 978–3–319–09057–3, pp 2113–2117

  • Nigro F, Pisciotta A, Perricone M, Favara R, Renda P, Cusimano G, Torre F (2011) Stima Della Pericolosità Potenziale Al Dissesto Idrogeologico Nella Provincia di Messina: Valutazione Preliminare. Giornale Dell’ordine Regionale Dei Geologi Di Sicilia 3:2011

    Google Scholar 

  • Pastor M, Blanc T, Manzanal D, Drempetic V, Pastor MJ, Sanchez M, Crosta G, Imposimato S, Roddeman D, et al. (2012) Landslide runout: Review of analytical/empirical models for subaerial slides, submarine slides and snow avalanche. Numerical modelling. Software tools, material models, validation and benchmarking for selected case studies. SafeLand Deliverable 1.7, Revision 2

  • Porter M, Morgenstern N (2013) Landslide Risk Evaluation – Canadian Technical Guidelines and Best Practices related to Landslides: a national initiative for loss reduction Geological Survey of Canada, Open File 7312. https://doi.org/10.4095/292234

  • Puglisi C, Falconi L, Grauso S, Screpanti A, Verrubbi V, Zini A, Crovato C, Campolo D, Leoni G, Lumaca S, Malerba S, Brustia E, Comerci V, Lucarini M, Napoli R, Torre A, Pino P (2013) Valutazione della pericolosità da frana nel Territorio del Comune di Messina RT/2013/18/ENEA https://iris.enea.it/retrieve/handle/20.500.12079/6666/416/RT-2013-18-ENEA.pdf

  • Puglisi C, Falconi L, Gioè C, Leoni G (2015) Contribution to the runout evaluation of potential debris flows in Peloritani Mountains (Messina, Italy). engineering geology for society and territory - Volume 2, landslide processes. Springer International Publishing Switzerland, ISBN: 978–3–319–09057–3, pp. 509–513

  • Rickenmann D (1999) Empirical relationships for debris flows. Natural Hazards 19: 47–77.lio 2007, 1–9

  • Rickenmann D (2005) Runout prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 305–324

    Chapter  Google Scholar 

  • Saulnier GM, Beven K, Obled C (1997) Including spatially variable effective soil depths in TOPMODEL. J Hydrol 202:158–172. https://doi.org/10.1016/S0022-1694(97)00059-0

    Article  Google Scholar 

  • Scheidl C, Rickenmann D (2010) Empirical prediction of debris-flow mobility and deposition on fans. Earth surface processes and landforms. Earth Surf Process Landforms 35:157–173

    Google Scholar 

  • Schilirò L, Esposito C, Scarascia Mugnozza G (2015a) Evaluation of shallow landslide-triggering scenarios through a physically based approach: an example of application in the southern Messina area (northeastern Sicily, Italy). Nat Hazards Earth Syst Sci 15:2091–2109. https://doi.org/10.5194/nhess-15-2091-2015

    Article  Google Scholar 

  • Schilirò L, Esposito C, Scarascia Mugnozza G (2015b) A deterministic approach for shallow landslide triggering scenarios in the southern Messina area (north-eastern Sicily, Italy). Rend. Online Soc Geol It 35(2015b):272–275. https://doi.org/10.3301/ROL.2015.118

    Article  Google Scholar 

  • Regione Siciliana (2004) Piano stralcio di Bacino per l’Assetto Idrogeologico (P.A.I.) della Regione Siciliana. Relazione generale. Assessorato Territorio e Ambiente – Dipartimento Territorio e Ambiente

  • Regione Siciliana (2009) Criteri di intervento per la messa in sicurezza del centro abitato di Giampilieri Superiore colpito dall’alluvione del 1° ottobre 2009. DESCRIZIONE DEI DISSESTI E DEGLI INTERVENTI IMMEDIATI NEL CENTRO ABITATO DI GIAMPILIERI SUPERIORE. RELAZIONE PRELIMINARE. UFFICIO DEL COMMISSARIO DELEGATO EX O.P.C.M. 10 ottobre 2009, n.3815. 23/11/2009

  • Zou Z, Xiong C, Huiming T, Criss RE, Su A (2017) Liu X (2017) Prediction of landslide runout based on influencing factor analysis. Environ Earth Sci 76:723. https://doi.org/10.1007/s12665-017-7075-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Filippo Catani (University of Padova, Italy) and Samuele Segoni (University of Firenze, Italy) for providing useful advice about the use and application of the GIST model. Special thanks are devoted to Lina Vitali (ENEA, Italy) for her valuable support on the statistical evaluation of the geometric parameters dataset.

Funding

This work was carried out as part of the RAFAEL project co-financed by the Ministry of University and Research under the PON “Research and Innovation” 2014–2020 and FSC funds referred to the D.D. of 13 July 2017 n. 1735—Application ARS01_00305 “Smart Secure and Inclusive Communities” specialization area.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Field activities and dataset collection were mainly performed by LMF and CP. GIS analysis and data elaboration were mainly performed by LMF and LM. The first draft of the manuscript was written by LMF and GR, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luca Maria Falconi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falconi, L.M., Moretti, L., Puglisi, C. et al. Debris and mud flows runout assessment: a comparison among empirical geometric equations in the Giampilieri and Briga basins (east Sicily, Italy) affected by the event of October 1, 2009. Nat Hazards 117, 2347–2373 (2023). https://doi.org/10.1007/s11069-023-05945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-05945-8

Keywords

Navigation