Skip to main content

Advertisement

Log in

The use of machine learning techniques for a predictive model of debris flows triggered by short intense rainfall

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Alpine region of Aosta Valley has an early warning system to issue hydrogeological alerts up to 36 h in advance based on the output of hydrological models and rainfall thresholds. However, those thresholds generally do not apply to the debris flows triggered by local summer thunderstorms, which typically are intense rainfalls of short duration, with cumulative precipitation lower than 20 mm. Therefore, it is necessary to formulate a specific predictive debris-flow model, which takes into account other possible triggering factors. In this study, we have developed a predictive model for debris flows with machine learning techniques, using a detailed dataset composed by a variety of geomorphological and hydro-meteorological variables. The variables of the dataset were collected from daily measured and modelled data for all of the 91 drainage basins in which at least one debris-flow event was generated during the time period considered in this study (2009–2019). The performance of the model, using different machine learning techniques, was evaluated, and the most suitable model was chosen to be experimentally implemented in the existing early warning system of the region. The output of the model provides a debris-flow probability (DFP) for individual basins computed from the geomorphological and hydro-meteorological input variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abancó C, Hürlimann M (2014) Estimate of the debris-flow entrainment using field and topographical data. Nat Hazards 81:363–383

    Article  Google Scholar 

  • Agrawal K, Baweja Y, Dwivedi D, Saha R, Prasad P, Agrawal S, Kapoor S, Chaturvedi P, Mali N, Kala VU, Dutt V (2017) A comparison of class imbalance techniques for real-world landslide predictions. In: International conference on machine learning and data science (MLDS) 2018:1–8.https://doi.org/10.1109/MLDS.2017.21

  • Angillieri MYE (2015) Application of logistic regression and frequency ratio in the spatial distribution of debris-rockslides: precordillera of San Juan, Argentina. Quart Int 355:202–208. https://doi.org/10.1016/j.quaint.2014.11.002

    Article  Google Scholar 

  • Angillieri MYE (2020) Debris flow susceptibility mapping using frequency ratio and seed cells, in a portion of a mountain international route, Dry Central Andes of Argentina. CATENA 189:104504. https://doi.org/10.1016/j.catena.2020.104504

    Article  Google Scholar 

  • Beason SR, Legg NT, Kenyon TR, Jost RP (2021) Forecasting and seismic detection of proglacial debris flows at Mount Rainier National Park, Washington, USA. Environ Eng Geosci 27(1):57–72

    Article  Google Scholar 

  • Bertrand M, Liébault F, Piégay H (2013) Debris-flow susceptibility of upland catchments. Nat Hazards 67:497–511. https://doi.org/10.1007/s11069-013-0575-4

    Article  Google Scholar 

  • Bertrand M, Liébault F, Piégay H (2017) Regional scale mapping of debris-flow susceptibility in the Southern French Alps. J Alpine Res 105(4):17

    Google Scholar 

  • Bornaetxea T, Rossi M, Marchesini I, Alvioli M (2018) Effective surveyed area and its role in statistical landslide susceptibility assessments. Nat Hazard 18:2455–2469. https://doi.org/10.5194/nhess-18-2455-2018

    Article  Google Scholar 

  • Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  Google Scholar 

  • D’Amico ME, Pintaldi E, Sapino E, Colombo N, Quaglino E, Stanchi S, Navillod E, Rocco R, Freppaz M (2002) Soil types of Aosta Valley. J Maps 16(2):755–765

    Article  Google Scholar 

  • Dal Piaz GV, Bistacchi A, Massironi M (2003) Geological outline of the Alos. J Int Geosci 26(3):175–180

    Google Scholar 

  • Di B, Zhang H, Liu Y, Li J, Chen N, Stamatopoulos CA, Luo Y, Zhan Y (2020) Assessing susceptibility of debris flow in southwest China using gradient boosting machine. Sci Rep 9:12532. https://doi.org/10.1038/s41598-019-48986-5

    Article  Google Scholar 

  • Elkadiri R, Sultan M, Youssef AM, Elbayoumi T, Chase R, Bulkhi AB, Al-Katheeri MM (2014) A remote sensing-based approach for debris-flow susceptibility assessment using artificial neural networks and logistic regression modeling. J Sel Top Appl Earth Observ Remote Sens 7:4818–4835. https://doi.org/10.1109/JSTARS.2014.2337273

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

    Article  Google Scholar 

  • Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intell Data Anal 6(5):429–449

    Article  Google Scholar 

  • Jiang W, Rao P, Cao R, Tang Z, Chen K (2017) Comparative evaluation of geological disaster susceptibility using multi-regression methods and spatial accuracy validation. J Geog Sci 27:439–462. https://doi.org/10.1007/s11442-017-1386-4

    Article  Google Scholar 

  • Jin T, Hu X, Liu B, Xi C, He K, Cao X, Luo G, Han M, Ma G, Yang Y, Wang Y (2022) Susceptibility prediction of post-fire debris flows in Xichang, China, using a logistic regression model from a spatiotemporal perspective. Remote Sens 14(6):1306. https://doi.org/10.3390/rs14061306

    Article  Google Scholar 

  • Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28(5):1–26

    Article  Google Scholar 

  • Laiolo P, Gabellani S, Campo L, Silvestro F, Delogu F, Rudari R, Pulvirenti L, Boni G, Fascetti F, Pierdicca N, Crapolicchio R, Hasenauer S, Puca S (2016) Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model. Int J Appl Earth Observ Geoinf 48:131–145

    Google Scholar 

  • Leonarduzzi E, Molnar P, McArdell BW (2017) Predictive performance of rainfall thresholds for shallow landslides in Switzerland from gridded daily data. Water Resour Res 53:6612–6625. https://doi.org/10.1002/2017WR021044

    Article  Google Scholar 

  • Liang WJ, Zhuang DF, Jiang D, Pan JJ, Ren HY (2012) Assessment of debris-flow hazards using a Bayesian network. Geomorphology 171–172:94–100. https://doi.org/10.1016/j.geomorph.2012.05.008

    Article  Google Scholar 

  • Liang Z, Wang CM, Zhang ZM, Khan KUJ (2020) A comparison of statistical and machine learning methods for debris flow susceptibility mapping. Stoch Environ Res Risk Assess 34:1887–1907. https://doi.org/10.1007/s00477-020-01851-8

    Article  Google Scholar 

  • Lunardon N, Menardi G, Torelli N (2014) ROSE: a package for binary imbalanced learning. Comput Sci 6:79–89

    Google Scholar 

  • Mirus BB, Morphew MD, Smith JB (2018) Developing hydro-meteorological thresholds for shallow landslide initiation and early warning. Water 10(9):1274

    Article  Google Scholar 

  • Paranunzio R, Chiarle M, Laio F, Nigrelli G, Turconi L, Luino F (2018) New insights in the relation between climate and slope failures at high-elevation sites. Theoret Appl Climatol 137:1765–1784

    Article  Google Scholar 

  • Pignone F, Rebora N, Silvestro F, Castelli F (2010) GRISO: Generatore Random di Interpolazioni Spaziali da Osservazioni incerte. Piogge, Technical Report

  • Ponziani M, Pogliotti P, Stevenin H, Ratto SM (2020) Debris-flow indicator for an early warning system in the Aosta valley region. Nat Hazards 104(2):1819–1839

    Article  Google Scholar 

  • Prenner D, Kaitna R, Mostbauer K, Hrachowitz M (2018) The value of using multiple hydrometeorological variables to predict temporal debris flow susceptibility in an Alpine environment. Water Resour Res 54(9):6822–6843

    Article  Google Scholar 

  • Puca S, Porcu F, Rinollo A, Vulpiani G, Baguis P, Balabanova S, Campione E, Erturk A, Gabellani S, Iwanski R, Jurasek M, Kanak J, Kerenyi J, Koshinchanov G, Kozinarova G, Krahe P, Lapeta B, Labo E, Milani L, Okon L, Oztopal A, Pagliara P, Pignone F, Rachimow C, Rebora N, Roulin E, Sonmez I, Toniazzo A, Biron D, Casella D, Cattani E, Dietrich S, Di Paola F, Laviola S, Levizzani V, Melfi D, Mugnai A, Panegrossi G, Petracca M, Sanò P, Zauli F, Rosci P, de Leonibus L, Agosta E, Gattari F (2014) The Validation service of the hydrological SAF geostationary and polar satellite precipitation products. Nat Hazards Earth Syst Sci 14:871–889

    Article  Google Scholar 

  • RAVdA (2019) Catasto Dissesti Regionale—SCT. http://catastodissesti.partout.it/

  • RAVdA (2022) Carta Geologica della Valle d’Aosta—SCT. https://mappe.regione.vda.it/pub/geoCartoSCT/

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • Samia J, Temme A, Bregt A, Wallinga J, Guzzetti F, Ardizzone F (2019) Dynamic path-dependent landslide susceptibility modelling. Nat Hazards Earth Syst Sci 20(1):271–285

    Article  Google Scholar 

  • Shirzadi A, Shahabi H, Chapi K, Bui DT, Pham BT, Shahedi K, Ahmad BB (2017) A comparative study between popular statistical and machine learning methods for simulating volume of landslides. CATENA 157:213–226. https://doi.org/10.1016/j.catena.2017.05.016

    Article  Google Scholar 

  • Silvestro F, Gabellani S, Delogu F, Rudari R, Boni G (2013) Exploiting remote sensing land surface temperature in distributed hydrological modelling: the example of the continuum model. Hydrol Earth Syst Sci 17:39–62

    Article  Google Scholar 

  • Silvestro F, Gabellani S, Rudari R, Delogu F, Laiolo P, Boni G (2015) Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote-sensing data. Hydrol Earth Syst Sci 19:1727–1751

    Article  Google Scholar 

  • Su C, Wang L, Wang X, Huang Z, Zhang X (2015) Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine. Nat Hazards 76:1759–1779. https://doi.org/10.1007/s11069-014-1562

    Article  Google Scholar 

  • Su TJ, Pan TS, Chang YL, Lin SS, Hao MJ (2022) A hybrid fuzzy and K-nearest neighbor approach for debris flow disaster prevention. Access 10:21787–21797. https://doi.org/10.1109/ACCESS.2022.3152906

    Article  Google Scholar 

  • Tehrany MS, Jones S (2017) Evaluating the variations in the flood susceptibility maps accuracies due to the alterations in the type and extent of the flood inventory. Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-4/W5:209–214. https://doi.org/10.5194/isprs-archives-XLII-4-W5-209-2017

    Article  Google Scholar 

  • CF VdA (2022) http://cf.regione.vda.it/home.php

  • Wang LI, Guo M, Sawada K, Lin J, Zhang J (2016) A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosci J 20:117–136. https://doi.org/10.1007/s12303-015-0026-1

    Article  Google Scholar 

  • Wang S, Meng X, Chen G, Guo P, Xiong M, Zeng R (2017) Effects of vegetation on debris flow mitigation: a case study from Gansu province, China. Geomorphology 282:64–73. https://doi.org/10.1016/j.geomorph.2016.12.024

    Article  Google Scholar 

  • Wang H, Zhang L, Yin K, Luo H, Li J (2021) Landslide identification using machine learning. Geosci Front 12:351–364. https://doi.org/10.1016/j.gsf.2020.02.012

    Article  Google Scholar 

  • Wicki A, Lehmann P, Hauck C, Seneviratne SI, Waldner P, Stähli M (2020) Assessing the potential of soil moisture measurements for regional landslide early warning. Landslides 17:1881–1896

    Article  Google Scholar 

  • Xiong K, Adhikari BR, Stamatopoulos CA, Zhan Y, Wu S, Dong Z, Di B (2020) Comparison of different machine learning methods for debris-flow susceptibility mapping: a case study in the Sichuan province, China. Remote Sens 12(2):295. https://doi.org/10.3390/rs12020295

    Article  Google Scholar 

  • Xu W, Jing S, Yu W, Wang Z, Zhang G, Huang J (2013) A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China. Geomorphology 201:45–51. https://doi.org/10.1016/j.geomorph.2013.06.003

    Article  Google Scholar 

  • Yu X, Wang Y, Niu R, Hu Y (2016) A combination of geographically weighted regression, particle swarm optimization and support vector machine for landslide susceptibility mapping: a case study at Wanzhou in the Three Gorges area, China. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph13050487

    Article  Google Scholar 

  • Zhang Y, Ge T, Tian W, Liou Y (2019) Debris flow susceptibility mapping using machine-learning techniques in Shigatse area. China Remote Sens 11(23):2801. https://doi.org/10.3390/rs11232801

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other supports were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MP, DP, and AG. The first draft of the manuscript was written by MP. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Ponziani.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponziani, M., Ponziani, D., Giorgi, A. et al. The use of machine learning techniques for a predictive model of debris flows triggered by short intense rainfall. Nat Hazards 117, 143–162 (2023). https://doi.org/10.1007/s11069-023-05853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-05853-x

Keywords

Navigation