Skip to main content

Advertisement

Log in

Hybrid-based approaches for the flood susceptibility prediction of Kermanshah province, Iran

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study aims at optimizing the support vector regression (SVR) model using four metaheuristic methods, Harris hawks optimization (HHO), particle swarm optimization (PSO), gray wolf optimizer (GWO), and bat algorithm (BA). The intent is to create a reliable flood susceptibility map (FSM). In this regard, a flood inventory map for 617 flood locations was generated from the Google earth engine (GEE). Four hundred and thirty-two random locations (70%) were used for spatial flood susceptibility modeling, and 185 random locations (30%) were selected for testing hybrid approaches. Based on the available data and literature, the following eleven factors were selected: altitude, slope angle, slope aspect, plan curvature, stream power index (SPI), topographic wetness index (TWI), distance to river, lithology, drainage density, land use, and rainfall. The normalized frequency ratio (NFR) method was used to obtain a weight for each class of each factor. Next, flood susceptibility maps were produced by SVR-HHO, SVR-PSO, SVR-GWO, and SVR-BA hybrid models. The prediction power of hybrid models was assessed using various indicators of sensitivity, specificity, accuracy, kappa coefficient, receiver operating curve (ROC) diagram, mean square error (MSE), and root-mean-square error (RMSE). Validation results indicated the area under the curve (AUC) of 85.8%, 85.7%, 85.5%, and 84.6% for the SVR-HHO, SVR-GWO, SVR-BA, and SVR-PSO hybrid models, respectively. The results from testing phase reveal the best performance of the SVR-HHO model (RMSE = 0.401, MSE = 0.160, sensitivity = 0.822, specificity = 0.800, accuracy = 0.811, and kappa = 0.622). The SVR-PSO model had a poor performance (RMSE = 0.406, MSE = 0.164, sensitivity = 0.827, specificity = 0.773, accuracy = 0.80, and kappa = 0.60). It can be concluded that the map produced by SVR-HHO is a feasible approach for modeling flood susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Abadi AM, Al-Najar NA (2020) Comparative assessment of bivariate, multivariate and machine learning models for mapping flood proneness. Nat Hazards 100(2):461–491

    Article  Google Scholar 

  • Alabool HM, Alarabiat D, Abualigah L, Heidari AA (2021) Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Comput Appl 33:1–42

    Article  Google Scholar 

  • Al-Juaidi AE, Nassar AM, Al-Juaidi OE (2018) Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arab J Geosci 11(24):1–10

    Article  Google Scholar 

  • Andaryani S, Nourani V, Haghighi AT, Keesstra S (2021) Integration of hard and soft supervised machine learning for flood susceptibility mapping. J Environ Manag 291:112731. https://doi.org/10.1016/j.jenvman.2021.112731

    Article  Google Scholar 

  • Arora A, Pandey M, Siddiqui MA, Hong H, Mishra VN (2019) Spatial flood susceptibility prediction in Middle Ganga Plain: comparison of frequency ratio and Shannon’s entropy models. Geocarto Int 36:1–32

    Google Scholar 

  • Arora A, Arabameri A, Pandey M, Siddiqui MA, Shukla UK, Bui DT, Bhardwaj A (2021a) Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Sci Total Environ 750:141565

    Article  Google Scholar 

  • Arora A, Pandey M, Siddiqui MA, Hong H, Mishra VN (2021b) Spatial flood susceptibility prediction in Middle Ganga Plain: comparison of frequency ratio and Shannon’s entropy models. Geocarto Int 36:2085–2116. https://doi.org/10.1080/10106049.2019.1687594

    Article  Google Scholar 

  • Awad M, Khanna R (2015) Efficient learning machines: theories, concepts, and applications for engineers and system designers. Springer, Berkeley, p 268

    Book  Google Scholar 

  • Balogun AL, Rezaie F, Pham QB, Gigović L, Drobnjak S, Aina YA, Lee S (2021) Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms. Geosci Front 12(3):101104

    Article  Google Scholar 

  • Bathrellos GD, Skilodimou HD, Chousianitis K, Youssef AM, Pradhan B (2017) Suitability estimation for urban development using multi-hazard assessment map. Sci Total Environ 575:119–134

    Article  Google Scholar 

  • Billa L, Shattri M, Rodzi Mahmud A, Halim Ghazali A (2006) Comprehensive planning and the role of SDSS in flood disaster management in Malaysia. Disaster Prev Manag An Int J 15:233–240. https://doi.org/10.1108/09653560610659775

    Article  Google Scholar 

  • Bordbar M, Neshat A, Javadi S (2019) A new hybrid framework for optimization and modification of groundwater vulnerability in coastal aquifer. Environ Sci Pollut Res 26(21):21808–21827

    Article  Google Scholar 

  • Bordbar M, Neshat A, Javadi S, Pradhan B, Aghamohammadi H (2020) Meta-heuristic algorithms in optimizing GALDIT framework: a comparative study for coastal aquifer vulnerability assessment. J Hydrol 585:124768

    Article  Google Scholar 

  • Bordbar M, Paryani S, Pourghasemi HR (2022) Landslide spatial modeling using a bivariate statistical method in Kermanshah Province, Iran. In: Computers in earth and environmental sciences. Elsevier, pp 401–415

  • Bordbar M, Aghamohammadi H, Pourghasemi HR, Azizi Z (2022b) Multi-hazard spatial modeling via ensembles of machine learning and meta-heuristic techniques. Sci Rep 12(1):1–17

    Article  Google Scholar 

  • Bout B, Jetten VG (2018) The validity of flow approximations when simulating catchment-integrated flash floods. J Hydrol 556:674–688

    Article  Google Scholar 

  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378

    Article  Google Scholar 

  • Bui DT, Pradhan B, Nampak H, Bui QT, Tran QA, Nguyen QP (2016) Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. J Hydrol 540:317–330

    Article  Google Scholar 

  • Bui QT, Nguyen QH, Nguyen XL, Pham VD, Nguyen HD, Pham VM (2020) Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. J Hydrol 581:124379

    Article  Google Scholar 

  • Cao Y, Jia H, Xiong J, Cheng W, Li K, Pang Q, Yong Z (2020) Flash flood susceptibility assessment based on geodetector, certainty factor, and logistic regression analyses in fujian province, china. ISPRS Int J Geo-Information 9:1–22. https://doi.org/10.3390/ijgi9120748

    Article  Google Scholar 

  • Cardenas MB, Wilson J, Zlotnik VA (2004) Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resour Res 40:1–13

    Article  Google Scholar 

  • Chakrabortty R, Chandra Pal S, Rezaie F, Arabameri A, Lee S, Roy P, Saha A, Chowdhuri I, Moayedi H (2021) Flash-flood hazard susceptibility mapping in Kangsabati River basin, India. Geocarto Int. https://doi.org/10.1080/10106049.2021.1953618

    Article  Google Scholar 

  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95:229–245

    Article  Google Scholar 

  • Chen W, Panahi M, Pourghasemi HR (2017) Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena 157:310–324

    Article  Google Scholar 

  • Chen W, Chen X, Peng J, Panahi M, Lee S (2021) Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci Front 12(1):93–107

    Article  Google Scholar 

  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  • Costache R (2019) Flood susceptibility assessment by using bivariate statistics and machine learning models --- a useful tool for flood risk management. Water Resour Manag 33:3239–3256. https://doi.org/10.1007/s11269-019-02301-z

    Article  Google Scholar 

  • Costache R, Țîncu R, Elkhrachy I, Pham QB, Popa MC, Diaconu DC, Bui DT (2020) New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping. Hydrol Sci J 65(16):2816–2837

    Article  Google Scholar 

  • Dang NM, Babe MS, Luong HT (2011) Evaluation of food risk parameters in the day river flood diversion area, Red river delta, Vietnam. Nat Hazards. 56:169–194

    Article  Google Scholar 

  • Darabi H, Torabi Haghighi A, Rahmati O, Jalali Shahrood A, Rouzbeh S, Pradhan B, Tien Bui D (2021) A hybridized model based on neural network and swarm intelligence-grey wolf algorithm for spatial prediction of urban flood-inundation. J Hydrol 603:126854. https://doi.org/10.1016/j.jhydrol.2021.126854

    Article  Google Scholar 

  • Dodangeh E, Choubin B, Eigdir AN, Nabipour N, Panahi M, Shamshirband S, Mosavi A (2020a) Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Sci Total Environ 705:135983. https://doi.org/10.1016/j.scitotenv.2019.135983

    Article  Google Scholar 

  • Dodangeh E, Panahi M, Rezaie F, Lee S, Bui DT, Lee CW, Pradhan B (2020b) Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. J Hydrol 590:125423

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Article  Google Scholar 

  • Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V(1996) Support vector regression machines. Adv Neural Inf Process Syst 9:155–161

    Google Scholar 

  • Duan Y, Meng F, Liu T, Huang Y, Luo M, Xing W, De Maeyer P (2019) Sub-daily simulation of mountain flood processes based on the modified soil water assessment tool (swat) model. Int J Environ Res Public Health 16(17):3118

    Article  Google Scholar 

  • Fang Z, Wang Y, Peng L, Hong H (2021) Predicting flood susceptibility using LSTM neural networks. J Hydrol 594:125734. https://doi.org/10.1016/j.jhydrol.2020.125734

    Article  Google Scholar 

  • Getahun YS, Gebre SL (2015) Flood hazard assessment and mapping of flood inundation area of the Awash River Basin in Ethiopia using GIS and HECGeoRAS/HEC-RAS model. Civ Eng Environ Syst 5:179. https://doi.org/10.4172/2165784X.1000179

    Article  Google Scholar 

  • Gourav P, Kumar R, Gupta A, Arif M (2020) Flood hazard zonation of bhagirathi river basin using multi-criteria decision-analysis in Uttarakhand, India. Int J Emerg Technol 11:62–71

    Google Scholar 

  • Gudiyangada Nachappa T, Tavakkoli Piralilou S, Gholamnia K, Ghorbanzadeh O, Rahmati O, Blaschke T (2020) Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J Hydrol 590:125275. https://doi.org/10.1016/j.jhydrol.2020.125275

    Article  Google Scholar 

  • Haghizadeh A, Siahkamari S, Haghiabi AH, Rahmati O (2017) Forecasting flood-prone areas using Shannon’s entropy model. J Earth Syst Sci 126(3):39

    Article  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Article  Google Scholar 

  • Hipni A, El-shafie A, Najah A, Karim OA, Hussain A, Mukhlisin M (2013) Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS). Water Resour Manag 27(10):3803–3823

    Article  Google Scholar 

  • Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu A-X, Chen W, Kougias I, Kazakis N (2017) Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ 621:1124–1141

    Article  Google Scholar 

  • Horritt MS, Bates PD (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation. J Hydrol 268(1–4):87–99

    Article  Google Scholar 

  • Islam ARMT, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Linh NTT (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12(3):101075

    Article  Google Scholar 

  • Janizadeh S, Avand M, Jaafari A, Phong TV, Bayat M, Ahmadisharaf E, Lee S (2019) Prediction success of machine learning methods for flash flood susceptibility mapping in the tafresh watershed, Iran. Sustainability 11(19):5426

    Article  Google Scholar 

  • Janizadeh S, Vafakhah M, Kapelan Z, Dinan NM (2021) Novel Bayesian additive regression tree methodology for flood susceptibility modeling. Water Resour Manag 35:4621–4646. https://doi.org/10.1007/s11269-021-02972-7

    Article  Google Scholar 

  • Kazakis N, Kougias I, Patsialis T (2015) Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in rhodope–evros region, greece. Sci Total Environ 538:555–563

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, 4. 1942–1948

  • Khosravi K, Pourghasemi HR, Chapi K, Bahri M (2016) Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ Monit Assess 188(12):1–21

    Article  Google Scholar 

  • Khosravi K, Panahi M, Golkarian A, Keesstra SD, Saco PM, Bui DT, Lee S (2020) Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. J Hydrol 591:125552. https://doi.org/10.1016/j.jhydrol.2020.125552

    Article  Google Scholar 

  • Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I, Prakash I, Bui DTA (2018a) comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ 627:744–755

    Article  Google Scholar 

  • Khosravi K, Panahi M, Tien Bui D (2018b) Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrol Earth Syst Sci 22(9):4771–4792

    Article  Google Scholar 

  • Khosravi K, Melesse AM, Shahabi H, Shirzadi A, Chapi K, Hong H (2019) Flood susceptibility mapping at Ningdu catchment, China using bivariate and data mining techniques. In: Extreme hydrology and climate variability. 419–434

  • Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A (2012) An artificial neural network model for flood simulation using GIS: Johor River basin, Malaysia. Environ Earth Sci 67:251–264

    Article  Google Scholar 

  • Kisi O, Choubin B, Deo RC, Yaseen ZM (2019) Incorporating synoptic-scale climate signals for streamflow modelling over the Mediterranean region using machine learning models. Hydrol Sci J 64(10):1240–1252

    Article  Google Scholar 

  • Kongkaew W(2017) Bat algorithm in discrete optimization: a review of recent applications. Songklanakarin J Sci Technol 39(5)

  • Kumar KS, Naveen S (2014) Power system reconfiguration and loss minimization for a distribution systems using “Catfish PSO” algorithm. Front Energy 8(4):434–442

    Article  Google Scholar 

  • Lea D, Yeonsu K, Hyunuk A (2019) Case study of HEC-RAS 1D–2D coupling simulation: 2002 Baeksan flood event in Korea. Water 11(10):2048

    Article  Google Scholar 

  • Lee MJ, Kang JE, Jeon S (2012) Application of frequency ratio model and validation for predictive fooded area susceptibility mapping using GIS. In: Proceedings of geoscience and remote sensing symposium (IGARSS), 2012 IEEE international, Munich, 895–898

  • Lee S, Kim JC, Jung HS, Lee MJ, Lee S (2017) Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea.  Geomat Nat Hazards Risk 8(2):1185–1203

    Article  Google Scholar 

  • Linh NTT, Pandey M, Janizadeh S, Bhunia GS, Norouzi A, Ali S, Ahmadi K (2022) Flood susceptibility modeling based on new hybrid intelligence model: optimization of XGboost model using GA metaheuristic algorithm. Adv Space Res 69(9):3301–3318

    Article  Google Scholar 

  • Malik A, Tikhamarine Y, Souag-Gamane D, Kisi O, Pham QB (2020) Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction. Stoch Environ Res Risk Assess 34(11):1755–1773

    Article  Google Scholar 

  • Markantonis V, Meyer V, Lienhoop N (2013) Evaluation of the environmental impacts of extreme floods in the Evros River basin using contingent valuation method. Nat Hazards 69(3):1535–1549

    Article  Google Scholar 

  • Mehrabi M, Pradhan B, Moayedi H, Alamri A (2020) Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques. Sensors 20(6):1723

    Article  Google Scholar 

  • Merz B, Kreibich H, Schwarze R, Thieken A (2010) Assessment of economic food damage. Nat Hazard Earth Syst Sci 10:1697–1724

    Article  Google Scholar 

  • Meshram SG, Ghorbani MA, Shamshirband S, Karimi V, Meshram C (2019) River flow prediction using hybrid PSOGSA algorithm based on feed-forward neural network. Soft Comput 23(20):10429–10438

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mirzaei S, Vafakhah M, Pradhan B, Alavi SJ (2021) Flood susceptibility assessment using extreme gradient boosting (EGB), Iran. Earth Sci Inform 14:51–67. https://doi.org/10.1007/s12145-020-00530-0

    Article  Google Scholar 

  • Moayedi H, Mehrabi M, Kalantar B, Mu’azu A, Rashid MA, Foong AS, Nguyen LK (2019) Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide. Geomat Nat Hazards Risk 10(1):1879–1911

    Article  Google Scholar 

  • Mohammadi A, Kamran KV, Karimzadeh S, Shahabi H, Al-Ansari N (2020) Flood detection and susceptibility mapping using sentinel-1 time series, alternating decision trees, and bag-adtree models. Complexity. https://doi.org/10.1155/2020/4271376

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30

    Article  Google Scholar 

  • Mousavi SZ, Kavian A, Soleimani K, Mousavi SR, Shirzadi A (2011) GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomat Nat Hazards Risk 2(1):33–50. https://doi.org/10.1080/19475705.2010.532975

    Article  Google Scholar 

  • Msabi MM, Makonyo M (2021) Flood susceptibility mapping using GIS and multi-criteria decision analysis: a case of Dodoma region, central Tanzania. Remote Sens Appl Soc Environ 21:100445

    Google Scholar 

  • Nandi A, Mandal A, Wilson M, Smith D (2016) Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environ Earth Sci 75(6):465

    Article  Google Scholar 

  • Natarajan L, Usha T, Gowrappan M, Palpanabhan Kasthuri B, Moorthy P, Chokkalingam L (2021) Flood susceptibility analysis in Chennai corporation using frequency ratio model. J Indian Soc Remote Sens 49:1533–1543. https://doi.org/10.1007/s12524-021-01331-8

    Article  Google Scholar 

  • Nhu VH, Ngo PTT, Pham TD, Dou J, Song X, Hoang ND, Tran DA, Cao DP, Aydilek IB, Amiri M, Costache R, Hoa PV, Bui DT (2020) A new hybrid firefly-pso optimized random subspace tree intelligence for torrential rainfall-induced flash flood susceptible mapping. Remote Sens 12:1–18. https://doi.org/10.3390/RS12172688

    Article  Google Scholar 

  • Oeurng C, Sauvage S, Sánchez-Pérez J-M (2011) Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J Hydrol 401:145–153

    Article  Google Scholar 

  • Olii MR, Olii A, Pakaya R (2021) The integrated spatial assessment of the flood hazard using AHP-GIS: The case study of gorontalo regency. Indones J Geogr 53:126–135. https://doi.org/10.22146/IJG.59999

    Article  Google Scholar 

  • Pal S, Singha P (2021) Analyzing sensitivity of flood susceptible model in a flood plain river basin. Geocarto Int 0:1–34. https://doi.org/10.1080/10106049.2021.1967464

    Article  Google Scholar 

  • Panahi M, Gayen A, Pourghasemi HR, Rezaie F, Lee S (2020) Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Sci Total Environ 741:139937

    Article  Google Scholar 

  • Panahi M, Dodangeh E, Rezaie F, Khosravi K, Van Le H, Lee MJ, Pham BT (2021) Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. Catena 199:105114

    Article  Google Scholar 

  • Paryani S, Neshat A, Pradhan B (2021) Improvement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithms. Egypt J Remote Sens Space Sci 24(3):845–855

    Google Scholar 

  • Paul GC, Saha S, Hembram TK (2019) Application of the GIS-based probabilistic models for mapping the flood susceptibility in bansloi sub-basin of ganga-bhagirathi river and their comparison. Remote Sens Earth Syst Sci 2(2):120–146

    Article  Google Scholar 

  • Pham BT, Shirzadi A, Bui DT, Prakash I, Dholakia MB (2018) A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: a case study in the Himalayan area, India. Int J Sediment Res 33(2):157–170

    Article  Google Scholar 

  • Pham BT, Jaafari A, Phong T, Van, Yen HPH, Tuyen TT, Luong V, Van, Nguyen HD, Le H, Van, Foong LK (2021) Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques. Geosci Front 12:101105. https://doi.org/10.1016/j.gsf.2020.11.003

    Article  Google Scholar 

  • Pham BT, Luu C, Phong T, Van, Trinh PT, Shirzadi A, Renoud S, Asadi S, Le H, von Van J, Clague JJ (2021b) Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? J Hydrol 592:125615. https://doi.org/10.1016/j.jhydrol.2020.125615

    Article  Google Scholar 

  • Prasad P, Loveson VJ, Das B, Kotha M (2021) Novel ensemble machine learning models in flood susceptibility mapping. Geocarto Int 0:1–23. https://doi.org/10.1080/10106049.2021.1892209

    Article  Google Scholar 

  • Rahmati O, Pourghasemi HR, Zeinivand H (2016) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int 31(1):42–70

    Article  Google Scholar 

  • Rahmati O, Darabi H, Panahi M, Kalantari Z, Naghibi SA, Ferreira CSS, Haghighi AT (2020) Development of novel hybridized models for urban flood susceptibility mapping. Sci Rep 10(1):1–19

    Article  Google Scholar 

  • Rezaie, F., Panahi, M., Bateni, S.M. et al (2022) Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping. Nat Hazards 114:1247–1283. https://doi.org/10.1007/s11069-022-05424-6

    Article  Google Scholar 

  • Roy P, Pal SC, Arabameri A, Rezaie F, Chakrabortty R, Chowdhuri I, Saha A, Malik S, Das B (2021) Climate and land use change induced future flood susceptibility assessment in a sub-tropical region of India. Soft Comput 25:5925–5949. https://doi.org/10.1007/s00500-021-05584-w

    Article  Google Scholar 

  • Saha A, Pal SC, Arabameri A, Blaschke T, Panahi S, Chowdhuri I, Arora A (2021) Flood susceptibility assessment using novel ensemble of hyperpipes and support vector regression algorithms. Water 13(2):241

    Article  Google Scholar 

  • Sahana M, Rehman S, Sajjad H, Hong H (2020) Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: a study of Sundarban Biosphere Reserve, India. Catena. https://doi.org/10.1016/j.catena.2019.104450

    Article  Google Scholar 

  • Shadmehri Toosi A, Calbimonte GH, Nouri H, Alaghmand S (2019) River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: a case study. J Hydrol 574:660–671. https://doi.org/10.1016/j.jhydrol.2019.04.072

    Article  Google Scholar 

  • Shafizadeh-Moghadam H, Valavi R, Shahabi H, Chapi K, Shirzadi A (2018) Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J Environ Manag 217:1–11. https://doi.org/10.1016/j.jenvman.2018.03.089

    Article  Google Scholar 

  • Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague JJ, Ahmad A (2020) Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sens 12(2):266

    Article  Google Scholar 

  • Shahabi H, Shirzadi A, Ronoud S, Asadi S, Pham BT, Mansouripour F, Bui DT (2021) Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geosci Front 12(3):101100

    Article  Google Scholar 

  • Shirzadi A, Solaimani K, Roshan MH, Kavian A, Chapi K, Shahabi H, Bui DT (2019) Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena 178:172–188

    Article  Google Scholar 

  • Shirzadi A, Asadi S, Shahabi H, Ronoud S, Clague JJ, Khosravi K, Bui DT (2020) A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Eng Appl Artif Intell 96:103971

    Article  Google Scholar 

  • Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O (2018) Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int 33(9):927–941

    Article  Google Scholar 

  • Souissi D, Zouhri L, Hammami S, Msaddek MH, Zghibi A, Dlala M (2020) GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int 35(9):991–1017

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2014) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2015) Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Environ Res Risk Assess 29:1149–1165

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2015b) Flood susceptibility assessment using GIS based support vector machine model with different kernel types. Catena 125:91–101

    Article  Google Scholar 

  • Tehrany MS, Jones S, Shabani F (2019) Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. CATENA 175:174–192. https://doi.org/10.1016/j.catena.2018.12.011

    Article  Google Scholar 

  • Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S (2018) Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ 615:438–451

    Article  Google Scholar 

  • Tien Bui D, Khosravi K, Li S, Shahabi H, Panahi M, Singh VP, Bin Ahmad B (2018) New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water 10(9):1210

    Article  Google Scholar 

  • Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Alizadeh M, Chen W, Mohammadi A, Ahmad B, Panahi M, Hong H, Tian Y (2018) Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in cameron highlands, Malaysia. Remote Sens. 10(10):1527

    Article  Google Scholar 

  • Tien Bui D, Hoang ND, Pham TD, Ngo PTT, Hoa PV, Minh NQ, Tran XT, Samui P (2019) A new intelligence approach based on GIS-based multivariate adaptive regression splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. J Hydrol 575:314–326. https://doi.org/10.1016/j.jhydrol.2019.05.046

    Article  Google Scholar 

  • Tiwari MK, Chatterjee C (2010) Uncertainty assessment and ensemble food forecasting using bootstrap based artifcial neural networks (BANNs). J Hydrol 382(1):20–33

    Article  Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Vojtek M, Vojteková J (2019) Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water 11(2):364

    Article  Google Scholar 

  • Wang Y, Hong H, Chen W, Li S, Panahi M, Khosravi K, Costache R (2019) Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J Environ Manag 247:712–729

    Article  Google Scholar 

  • Wang Y, Fang Z, Hong H, Peng L (2020) Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol 582:124482

    Article  Google Scholar 

  • Waqas H, Lu L, Tariq A, Li Q, Baqa MF, Xing J, Sajjad A (2021) Flash flood susceptibility assessment and zonation using an integrating analytic hierarchy process and frequency ratio model for the Chitral District, Khyber Pakhtunkhwa, Pakistan. Water 13:1650. https://doi.org/10.3390/w13121650

    Article  Google Scholar 

  • World Health Organization [WHO] (2003) World disasters report, Chap. 8: disaster data: key trends and statistics; cited 2014 August 5. Available from: http://www.ifrc.org/PageFiles/89755/2003/43800-WDR2003_En.pdf

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72:1–12. DOI:https://doi.org/10.1016/j.catena.2007.01.003

    Article  Google Scholar 

  • Yan F, Zhang Q, Ye S, Ren B (2019) A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model. Geomorphology 327:170–187

    Article  Google Scholar 

  • Yang XS(2010) A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 65–74

  • Yariyan P, Avand M, Abbaspour RA, Torabi Haghighi A, Costache R, Ghorbanzadeh O, Janizadeh S, Blaschke T (2020) Flood susceptibility mapping using an improved analytic network process with statistical models. Geomat Nat Hazards Risk 11:2282–2314. https://doi.org/10.1080/19475705.2020.1836036

    Article  Google Scholar 

  • Yu T, Wang L, Han X, Liu Y, Zhang L (2015) Swarm intelligence optimization algorithms and their application. WHICEB 2015 Proc 3

  • Zhao G, Pang B, Xu Z, Yue J, Tu T (2018) Mapping flood susceptibility in mountainous areas on a national scale in China. Sci Total Environ 615:1133–1142

    Article  Google Scholar 

  • Zzaman RU, Nowreen S, Billah M, Islam AS (2021) Flood hazard mapping of Sangu River basin in Bangladesh using multi-criteria analysis of hydro-geomorphological factors. J Flood Risk Manag. https://doi.org/10.1111/jfr3.12715

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) and project of Data Construction for Artificial Intelligence Learning funded by National Information Society Agency and Ministry of Science and ICT.

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhyun Jun or Mahdi Panahi.

Ethics declarations

conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paryani, S., Bordbar, M., Jun, C. et al. Hybrid-based approaches for the flood susceptibility prediction of Kermanshah province, Iran. Nat Hazards 116, 837–868 (2023). https://doi.org/10.1007/s11069-022-05701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05701-4

Keywords

Navigation