Skip to main content

Advertisement

Log in

Wildfires in the Arctic and tropical biomes: what is the relative role of climate?

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study seeks to use machine learning to investigate the role of meteorological and climate variables on wildfire occurrence in the Arctic and the global tropical forests biomes. Using monthly fire counts observed by the MODIS satellites in combination with temperature and precipitation data, indices of large-scale atmospheric and oceanic anomalies (teleconnections), and global temperature anomalies (GT), a combined wavelet-machine learning approach is developed to identify drivers of variability in global wildfire counts on a monthly scale. Precipitation and temperature are found to be the most important predictors of wildfire count in all regions. In addition, the Atlantic Multidecadal Oscillation and GT are identified as the two major drivers of wildfire occurrence. Results indicate that the record-breaking 2019 wildfires in the Asian Arctic can be attributed to unusually warm and dry weather, while the recent increase in wildfires in Amazonia rather can be attributed to regional human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data used in this research are publically available through references listed throughout the manuscript.

References

  • Abbaszadeh P (2016) Improving hydrological process modeling using optimized threshold-based wavelet de-noising technique. Water Resour Manag 30:1701–1721. https://doi.org/10.1007/s11269-016-1246-5

    Article  Google Scholar 

  • Abbaszadeh P, Alipour A, Asadi S (2018) Development of a coupled wavelet transform and evolutionary Levenberg-Marquardt neural networks for hydrological process modeling. Comput Intell 34:175–199. https://doi.org/10.1111/coin.12124

    Article  Google Scholar 

  • Abbaszadeh P, Moradkhani H, Zhan X (2019) Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resour Res 55(1):324–344

    Article  Google Scholar 

  • Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(1–4):28–40

    Article  Google Scholar 

  • Adamowski J, Fung Chan H, Prasher SO, Ozga-Zielinski B, Sliusarieva A (2012) Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal. Canada Water Resour Res. https://doi.org/10.1029/2010WR009945

    Article  Google Scholar 

  • Addison PS, Murray KB, Watson JN (2001) Wavelet transform analysis of open channel wake flows. J Eng Mech 127(1):58–70

    Google Scholar 

  • Albergel C, Dutra E, Bonan B, Zheng Y, Munier S, Balsamo G, de Rosnay P, Muñoz-Sabater J, Calvet JC (2019) Monitoring and forecasting the impact of the 2018 summer heatwave on vegetation. Remote Sensing 11(5):520

    Article  Google Scholar 

  • Aldersley A, Murray SJ, Cornell SE (2011) Global and regional analysis of climate and human drivers of wildfire. Sci Total Environ 409(18):3472–3481

    Article  Google Scholar 

  • Aldrich S, Walker R, Simmons C, Caldas M, Perz S (2012) Contentious land change in the Amazon’s arc of deforestation. Ann Assoc Am Geogr 102(1):103–128

    Article  Google Scholar 

  • Amit Y, Geman D (1997) Shape quantization and recognition with randomized trees. Neural Comput 9(7):1545–1588

    Article  Google Scholar 

  • Andela N, Morton DC, Giglio L, Randerson JT (2019) Global Fire Atlas with Characteristics of Individual Fires, 2003-2016. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1642

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15(4):955–966

    Article  Google Scholar 

  • Archibald S (2016) Managing the human component of fire regimes: lessons from Africa. Philos Trans R Soc B Biol Sci 371(1696):20150346

    Article  Google Scholar 

  • Austin KG, Mosnier A, Pirker J, McCallum I, Fritz S, Kasibhatla PS (2017) Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 69:41–48

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126

    Article  Google Scholar 

  • Beverly JL, Flannigan MD, Stocks BJ, Bothwell P (2011) The association between Northern Hemisphere climate patterns and interannual variability in Canadian wildfire activity. Can J for Res 41(11):2193–2201

    Article  Google Scholar 

  • Breiman L (2001) Random Forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Bowman DM, Kolden CA, Abatzoglou JT, Johnston FH, van der Werf GR, Flannigan M (2020) Vegetation fires in the Anthropocene. Nat Rev Earth Environ 1(10):500–515

    Article  Google Scholar 

  • Carlson KM, Heilmayr R, Gibbs HK, Noojipady P, Burns DN, Morton DC et al (2018) Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc Natl Acad Sci 115(1):121–126

    Article  Google Scholar 

  • Chen Y, Guan Y, Shao G, Zhang D (2016) Investigating trends in streamflow and precipitation in Huangfuchuan Basin with wavelet analysis and the Mann-Kendall test. Water 8(3):77

    Article  Google Scholar 

  • Cochrane MA (2003) Fire science for rainforests. Nature 421(6926):913–919

    Article  Google Scholar 

  • Daubechies I (2009) The wavelet transform, time-frequency localization and signal analysis. pp 442–486. Princeton University Press.

  • Davies DK, Ilavajhala S, Wong MM, Justice CO (2008) Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Trans Geosci Remote Sens 47(1):72–79

    Article  Google Scholar 

  • Deb P, Moradkhani H, Abbaszadeh P, Kiem AS, Engström J, Keellings D, Sharma A (2020) Causes of the widespread 2019–2020 Australian bushfire season. Earth’s Future 8(11):e2020EF001671

    Article  Google Scholar 

  • Ekanger I, Brunvatne JO, Busk H, Alriksson A, Larsson S, Källsmyr H, Jónsson BB, Gasseholm K, Torniainen T, Arpiainen L, Jóhannesson T (2019). Det nordiska skogsbruket: utmaningar i en framtid präglad av mer extremväder. Nordic Council of Ministers

  • Fernandes K, Verchot L, Baethgen W, Gutierrez-Velez V, Pinedo-Vasquez M, Martius C (2017) Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures. Environ Res Lett 12(5):054002

    Article  Google Scholar 

  • Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (2014) Climate change 2014 impacts, adaptation and vulnerability: Part A: global and sectoral aspects: working group II contribution to the fifth assessment report of the intergovernmental panel on climate change. In: Climate Change 2014 impacts, adaptation and vulnerability: Part A: global and sectoral aspects. Cambridge University Press. https://doi.org/10.1017/CBO9781107415379

  • Finney MA, McHugh CW, Grenfell IC, Riley KL, Short KC (2011) A simulation of probabilistic wildfire risk components for the continental United States. Stoch Env Res Risk Assess 25(7):973–1000

    Article  Google Scholar 

  • Gao C, Zhao F, Shi C, Liu K, Wu X, Wu G et al (2021) Previous Atlantic Multidecadal Oscillation (AMO) modulates the lightning-ignited fire regime in the boreal forest of Northeast China. Environ Res Lett 16(2):024054

    Article  Google Scholar 

  • Gibson CM, Chasmer LE, Thompson DK, Quinton WL, Flannigan MD, Olefeldt D (2018) Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat Commun 9(1):1–9

    Article  Google Scholar 

  • Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ 178:31–41

    Article  Google Scholar 

  • Groisman PY, Sherstyukov BG, Razuvaev VN et al (2007) Potential forest fire danger over Northern Eurasia: changes during the 20th century. Global Planet Change 56(3–4):371–386

    Article  Google Scholar 

  • Guha-Sapir D, Below R, Hoyois P (2016) EM-DAT: the CRED/OFDA international disaster database

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys. https://doi.org/10.1029/2010RG000345

    Article  Google Scholar 

  • Hantson S, Arneth A, Harrison SP et al (2016) The status and challenge of global fire modelling. Biogeosciences 13(11):3359–3375

    Article  Google Scholar 

  • He T, Lamont BB, Pausas JG (2019) Fire as a key driver of Earth’s biodiversity. Biol Rev 94(6):1983–2010

    Article  Google Scholar 

  • Hernández Ayala JJ, Mann J, Grosvenor E (2021) Antecedent rainfall, excessive vegetation growth and its relation to wildfire burned areas in California. Earth and Space Science, p e2020EA001624

  • Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. J Geophys Res Biogeosci 115(G4)

  • Hua W, Dai A, Zhou L, Qin M, Chen H (2019) An externally forced decadal rainfall seesaw pattern over the Sahel and southeast Amazon. Geophys Res Lett 46(2):923–932

    Article  Google Scholar 

  • IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, M Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1132

  • Jain P, Coogan SC, Subramanian SG, Crowley M, Taylor S, Flannigan MD (2020) A review of machine learning applications in wildfire science and management. Environ Rev 28(4):478–505

    Article  Google Scholar 

  • Jenner L (2019) Huge wildfires in Russia’s Siberian Province Continue. NASA. https://www.nasa.gov/image-feature/goddard/2019/huge-wildfires-in-russiassiberian-province-continue. Accessed 14 Jan 2020

  • Keeley JE, Fotheringham CJ (2000) Role of fire in regeneration from seed. Seeds Ecol Regen Plant Commun 2:311–330

    Article  Google Scholar 

  • Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc Natl Acad Sci 110(32):13055–13060

    Article  Google Scholar 

  • Keyser A, Westerling AL (2017) Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States. Environ Res Lett 12(6):065003

    Article  Google Scholar 

  • Kingston DG, Stagge JH, Tallaksen LM, Hannah DM (2015) European-scale drought: understanding connections between atmospheric circulation and meteorological drought indices. J Clim 28(2):505–516

    Article  Google Scholar 

  • Kitzberger T, Falk DA, Westerling AL, Swetnam TW (2017) Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PloS one 12(12):e0188486

    Article  Google Scholar 

  • Krylov A, McCarty JL, Potapov P, Loboda T, Tyukavina A, Turubanova S, Hansen MC (2014) Remote sensing estimates of stand-replacement fires in Russia, 2002–2011. Environ Res Lett 9(10):105007

    Article  Google Scholar 

  • Le Goff H, Flannigan MD, Bergeron Y, Girardin MP (2007) Historical fire regime shifts related to climate teleconnections in the Waswanipi area, central Quebec Canada. Int J Wildland Fire 16(5):607–618

    Article  Google Scholar 

  • Le Page Y, Morton D, Hartin C, Bond-Lamberty B, Pereira JMC, Hurtt G, Asrar G (2017) Synergy between land use and climate change increases future fire risk in Amazon forests. Earth System Dynamics (Online), 8(PNNL-SA-119758)

  • Lehsten V, Tansey K, Balzter H, Thonicke K, Spessa A, Weber U, Smith B, Arneth A (2009) Estimating carbon emissions from African wildfires. Biogeosciences 6(3):349–360

    Article  Google Scholar 

  • Li F, Lawrence DM, Bond-Lamberty B (2018a) Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories. Global Planet Change 162:18–27

    Article  Google Scholar 

  • Li D, Wu S, Liu L, Zhang Y, Li S (2018b) Vulnerability of the global terrestrial ecosystems to climate change. Glob Change Biol 24(9):4095–4106

    Article  Google Scholar 

  • Littell JS, Peterson DL, Riley KL, Liu Y, Luce CH (2016) A review of the relationships between drought and forest fire in the United States. Glob Change Biol 22(7):2353–2369

    Article  Google Scholar 

  • Lu R, Dong B, Ding H (2006). Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys Res Lett, 33(24)

  • Macedo MN, DeFries RS, Morton DC, Stickler CM, Galford GL, Shimabukuro YE (2012) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc Natl Acad Sci 109(4):1341–1346

    Article  Google Scholar 

  • Macias Fauria M, Johnson EA (2006). Large‐scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. J Geophys Res Biogeosci 111(G4)

  • Maharaj EA (2002) Pattern recognition of time series using wavelets. In Compstat, pp. 497–502. Physica, Heidelberg

  • Malhi Y, Aragão LE, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci 106(49):20610–20615

    Article  Google Scholar 

  • Mallat S (2009) A wavelet tour of signal processing. Elsevier

    Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Oyama MD, Sampaio de Oliveira G, De Oliveira R, Camargo H, Alves L, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516

    Article  Google Scholar 

  • McHugh MJ, Rogers JC (2001) North Atlantic oscillation influence on precipitation variability around the southeast African convergence zone. J Clim 14(17):3631–3642

    Article  Google Scholar 

  • Mollicone D, Eva HD, Achard F (2006) Human role in Russian wild fires. Nature 440(7083):436–437

    Article  Google Scholar 

  • Najafi MR, Zwiers FW, Gillett NP (2015) Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nat Clim Change 5(3):246–249

    Article  Google Scholar 

  • Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228. https://doi.org/10.1016/j.jhydrol.2012.09.049

    Article  Google Scholar 

  • NASA (2019a) Fire Information for Resource Management System (FIRMS) https://firms.modaps.eosdis.nasa.gov/download/create.php Accessed September 6, 2019a

  • NASA (2019b) Huge Wildfires in Russia's Siberian Province Continue https://www.nasa.gov/image-feature/goddard/2019b/huge-wildfires-in-russias-siberian-province-continue Accessed January 17, 2020

  • Norris K, Asase A, Collen B, Gockowksi J, Mason J, Phalan B, Wade A (2010) Biodiversity in a forest-agriculture mosaic–The changing face of West African rainforests. Biol Cons 143(10):2341–2350

    Article  Google Scholar 

  • Nourani V, Tahershamsi A, Abbaszadeh P, Shahrabi J, Hadavandi E (2014) A new hybrid algorithm for rainfall-runoff process modeling based on the wavelet transform and genetic fuzzy system. J Hydroinf 16:1004–1024. https://doi.org/10.2166/hydro.2014.035

    Article  Google Scholar 

  • NOAA (2018) EL NIÑO/SOUTHERN OSCILLATION (ENSO) DIAGNOSTIC DISCUSSION issued by CLIMATE PREDICTION CENTER/NCEP/NWS and the International Research Institute for Climate and Society 8 November 2018, https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_nov2018/ensodisc.pdf Accessed June 15, 2021

  • NOAA (2019) EL NIÑO/SOUTHERN OSCILLATION (ENSO) DIAGNOSTIC DISCUSSION issued by CLIMATE PREDICTION CENTER/NCEP/NWS and the International Research Institute for Climate and Society 14 February 2019 https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_feb2019/ensodisc.pdf Accessed June 15, 2021

  • NOAA (2020) Climate Indices: Monthly Atmospheric and Ocean Time-Series https://www.esrl.noaa.gov/psd/data/climateindices/list/ Accessed January 17, 2020

  • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59(7):593–601

    Article  Google Scholar 

  • Pausas JG, Keeley JE (2019) Wildfires as an ecosystem service. Front Ecol Environ 17(5):289–295

    Article  Google Scholar 

  • Ramana RV, Krishna B, Kumar SR, Pandey NG (2013) Monthly rainfall prediction using wavelet neural network analysis. Water Resour Manage 27(10):3697–3711

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H (2010) The NCEP climate forecast system reanalysis. Bull Am Meteor Soc 91(8):1015–1058

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Chuang HY, Iredell M, Ek M (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208

    Article  Google Scholar 

  • Sever M (2020) What is left in the air after a wildfire depends on exactly what burned. Eos. https://doi.org/10.1029/2020EO138965

    Article  Google Scholar 

  • Smith CA, Sardeshmukh P (2000) The Effect of ENSO on the Intraseasonal Variance of Surface Temperature in Winter. Int J Climatol 20:1543–1557

    Article  Google Scholar 

  • Taheripour F, Hertel TW, Ramankutty N (2019) Market-mediated responses confound policies to limit deforestation from oil palm expansion in Malaysia and Indonesia. Proc Natl Acad Sci 116(38):19193–19199

    Article  Google Scholar 

  • Tedim F, Leone V, Xanthopoulos G (2016) A wildfire risk management concept based on a social-ecological approach in the European Union: Fire Smart Territory. Int J Disaster Risk Reduct 18:138–153

    Article  Google Scholar 

  • Tollefson J (2018) Enormous wildfires spark scramble to improve fire models. Nature 561(7721):16–17

    Article  Google Scholar 

  • U.S. Department of Commerce, NOAA/NWS/NCEP Climate Prediction Center (2019) Climate Diagnostics Bulletin July 2019. https://www.cpc.ncep.noaa.gov/products/CDB/CDB_Archive_html/bulletin_072019/index.shtml Accessed September 5th, 2019

  • Vogel MM, Zscheischler J, Wartenburger R, Dee D, Seneviratne SI (2019) Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth’s Future 7(7):692–703

    Article  Google Scholar 

  • Wehner MF, Arnold JR, Knutson T, Kunkel KE, LeGrande AN (2017) 2017: Droughts, floods, and wildfires. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK (eds) Climate Science Special Report: Fourth National Climate Assessment, Volume I. U.S. Global Change Re-search Program, Washington, DC, USA, pp 231–256 https://doi.org/10.7930/J0CJ8BNN.

  • Westerling AL, Turner MG, Smithwick EA, Romme WH, Ryan MG (2011) Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc Natl Acad Sci 108(32):13165–13170

    Article  Google Scholar 

  • World Wide Fund for Nature (2011) WWF Living Forests Report: Chapter 1, Forests for a living planet. Gland, Switzerland

  • Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20(10):553–560

    Article  Google Scholar 

  • Wu CR, Lin YF, Qiu B (2019) Impact of the Atlantic multidecadal oscillation on the Pacific North Equatorial Current bifurcation. Sci Rep 9(1):1–8

    Google Scholar 

  • Yang Y, Gan TY, Tan X (2020) Spatiotemporal changes of drought characteristics and their dynamic drivers in Canada. Atmos Res 232:104695

    Article  Google Scholar 

  • Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34(2–3):249–264

    Article  Google Scholar 

  • Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG et al (2016) Greening of the Earth and its drivers. Nature Clim Change 6(8):791–795. https://doi.org/10.1038/nclimate3004

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Engström.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engström, J., Abbaszadeh, P., Keellings, D. et al. Wildfires in the Arctic and tropical biomes: what is the relative role of climate?. Nat Hazards 114, 1901–1914 (2022). https://doi.org/10.1007/s11069-022-05452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05452-2

Keywords

Navigation