Skip to main content

Estimating the hazard of tree fall along railway lines: a new GIS tool

Abstract

Trees along railway networks represent a high risk due to their potential to fall during extreme weather events. The identification of locations along railway tracks with highest tree fall hazard is an important part of a proactive natural hazard management. A new user-friendly GIS tool (as ArcGIS toolbox) was developed that provides the opportunity to detect individual trees along railway lines and to estimate the hazard of tree fall. By an automated analysis of open source digital remote sensing data and additional open source geodata, the tool allows for an up-to-date and area-wide monitoring of trees on railway lines and other infrastructural elements. Important parameters describing meteorological conditions, site conditions, topographic conditions and tree characteristics are implemented. The tool was successfully tested and applied to two federal states in Germany (Northrhine-Westphalia and Thuringia). Due to the automatization of most of the processes, it is possible to extend the application to larger areas with low effort, i.e., to the Germany-wide rail network or to other countries. It is also possible to perform the analysis for other modes of transport. In the context of natural hazard management, the tool can be applied in prevention and can usefully support already existing vegetation management concepts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data and the GIS tool can made available on reasonable request by the authors.

References

  • Albert M, Hansen J, Nagel J, Schmidt M, Spellmann H (2015) Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change. For Ecosyst 2:1–21

    Article  Google Scholar 

  • Albrecht A (2009) Sturmschadensanalysen langfristiger waldwachstumskundlicher Versuchsflächendaten in Baden-Württemberg. Dissertation, University of Freiburg

  • Bahn Manager (BM) (2018) DB erweitert Vegetationsmanagement Aktionsplan Vegetation. https: //www. bahn-manager.de/db-erweitert-vegetationsmanagement-%E%80%9Eaktionsplan-vegetation%E2%80%9C/. Accessed 02 Sept 2020

  • Bíl M, Andrášik R, Nezval V, Bílová M (2017) Identifying locations along railway networks with the highest tree fall hazard. Appl Geogr 87:42–53

    Article  Google Scholar 

  • Bott F, Lohrengel A-F, Forbriger M, Haller M, Jensen C, Löwe P, Ganske A, Herrmann C (2020) Klimawirkungsanalyse des Bundesverkehrssystems im Kontext von Stürmen – Schlussbericht des Schwerpunktthemas Sturmgefahren (SP-104) im Themenfeld 1 des BMVI-Expertennetzwerks. https://doi.org/10.5671/ExpNBF2020.2020.05

  • Braun G, (2011) Effiziente kantenerhaltende Glättung und ihre Anwendung in der Praxis. Diploma thesis, TU Wien

  • Brönnimann S, Martius O, von Waldow H, Welker C, Luterbacher J, Compo GP, Sardeshmukh PD, Usbeck T (2012) Extreme winds at northern mid-latitudes since 1871. Meteorol Z 21(1):13–27

    Article  Google Scholar 

  • Bundesanzeiger Verlag (2017) Entwurf eines Ersten Gesetzes zur Änderung des EGovernment-Gesetzes. Bundesgesetzblatt Jahrgang 2017, Teil I, Nr. 45. https://www.bmi.bund.de/SharedDocs/downloads/DE/gesetzestexte/gesetzesentwuerfe/entwurf-open-data-ge-setz.pdf;jsessionid=C15ACA8417A20ED61FE6CA96F444BE9B.1_cid295?__blob=publicationFile&v=1. Accessed 04 July 2020

  • Bundesamt für Kartographie und Geodäsie (BKG) (2018a) ATKIS® Basis-DLM aktualisiert. https://www.bkg.bund.de/SharedDocs/Produktinformationen/BKG/DE/P-2018a/181002-BasisDLMUpdate.html. Accessed 05 July 2020

  • Bundesamt für Kartographie und Geodäsie (BKG) (2018b) CORINE land cover 5 ha, stand 2018b (CLC5-2018). https://gdz.bkg.bund.de/index.php/default/open-data/corine-land-cover-5-ha-stand-2018-clc5-2018.html. Accessed 05 July 2020

  • Bundesamt für Kartographie und Geodäsie (BKG) (2020) Dokumentation Geographische Gitter für Deutschland GeoGitter. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/geogitter.pdf. Accessed 05 July 2020

  • Bundesministerium für Digitales und Verkehr (BMDV) (2019) Automatisierte Erfassung der gleisnahen Vegetation und von Unwetterschäden entlang des Streckennetzes der Detuschen Bahn mit autonom betriebenen Drohnen – FreeRail, https://www.bmvi.de/SharedDocs/DE/Artikel/DG/mfund-projekte/free-rail.html. Accessed 21 Jan 2022

  • Chi P, Lei Y, Shan SS, Wei Z, Hao D (2019) Research on power line segmentation and tree barrier analysis. In: 3rd International conference on electronic information technology and computer engineering (EITCE), Xiamen, 18–20 October 2019, pp 1395–1399

  • Chu H, Venevsky S, Wu C, Wang M (2019) NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci Total Environ 650:2051–2062

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  • Copernicus (2011) High resolution layer forest . https://land.copernicus.eu/pan-european/high-resolution-layers/forest. Accessed 15 Aug 2020

  • Della-Marta PM, Mathis H, Frei C, Liniger MA, Kleinn J, Appenzeller C (2009) The return period of wind storms over Europe. Int J Climatol 29:437–459

    Article  Google Scholar 

  • Deutsche Bahn (DB) (2020) Vegetationspflege mit künstlicher Intelligenz: Deutsche Bahn erfasst Baumbestand aus dem Weltall, https://www.deutschebahn.com/de/presse/pressestart_zentrales_uebersicht/Vegetationspflege-mit-kuenstlicher-Intelligenz-Deutsche-Bahn-erfasst-Baumbestand-aus-dem-Weltall-6868216#:~:text=F%C3%BCr%20einen%20sturmsicheren%20Vegetationsbestand%20erfasst,die%20Wuchsh%C3%B6he%20der%20Geh%C3%B6lze%20deutschlandweit. Accessed 21 Jan 2022

  • Deutscher Bundestag (2018) Antwort der Bundesregierung auf die Kleine Anfrage der Fraktion BÜNDNIS 90/DIE GRÜNEN – Drucksache 19/274 – Vegetationskontrolle und Vegetationspflege entlang der Schienenwege des Bundes. Drucksache 19/377 https://dserver.bundestag.de/btd/19/003/1900377.pdf. Accessed 06 July 2021

  • DB Netz AG (2017) Kompatibilität mit den Anforderungen des Netzes; Zusammenwirken Fahrzeug – Stromabnehmer – Oberleitung. https://fahrweg.dbnetze.com/resource/blob/1357058/19b5ada0f44c930908b494ace7a6ac34/810-0242_10-12-2017-data.pdf. Accessed 11 Oct 2020

  • Deutscher Wetterdienst (DWD) (2013) Windkarten und Winddaten für Deutschland Bezugszeitraum 1981–2000. https://www.dwd.de/DE/leistungen/windkarten/pdf/Windkarten_Info.pdf;jsessionid=BA36C7C0AF782029895E109F42F59AE3.live21072?__blob=publicationFile&v=2. Accessed 22 July 2020

  • Dobbertin M (2002) Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For Snow Landsc Res 77(1/2):187–205

    Google Scholar 

  • DSW (2014) Datenspeicher Wald—Version 2. https://dsw2.de. Accessed 06 May 2021

  • Eastman JR (1999) Multi-criteria evaluation and GIS. In: Longley PA, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical information systems. Wiley, New York, pp 493–502

    Google Scholar 

  • Einzelmann K, Immitzer M, Böck S, Bauer O, Schmitt A, Atzberger C (2017) Windthrow detection in european forests with very high-resolution optical data. Forests 8:21. https://doi.org/10.3390/f8010021

    Article  Google Scholar 

  • Galvão LS, Formaggio AR, Tisot DA (2005) Discrimination of surface varieties in Southeastern Brazil with EO-1 hyperion data. Remote Sens Environ 94:523–534

    Article  Google Scholar 

  • Gardiner B, Blennow K, Carnus J-M, Fleischer P, Ingemarson F, Landmann G, Lindner M, Marzano M, Nicoll B, Orazio C, Peyron J-L, Reviron M-P, Schelhaas M-J, Schuck A, Spielmann M, Usbeck T (2010) Destructive storms in European forests: past and forthcoming impacts. Book. https://doi.org/10.13140/RG.2.1.1420.4006

    Article  Google Scholar 

  • Brasseur GP, Jacob D, Schuck-Zöller S (eds) (2017K) Klimawandel in Deutschland. Springer, Heidelberg

    Google Scholar 

  • Greenwood JR, Norris JE, Wint J (2004) Assessing the contribution of vegetation to slope stability. Geotech Eng 157(4):199–207. https://doi.org/10.1680/geng.2004.157.4.199

    Article  Google Scholar 

  • Gullick D, Blackburn GA, Whyatt JD, Vopenka P, Murray J, Abbatt J (2019) Tree risk evaluation environment for failure and limb loss (TREEFALL): an integrated model for quantifying the risk of tree failure from local to regional scales. Comput Environ Urban Syst 75:217–228

    Article  Google Scholar 

  • Hall GB, Wang F, Subaryono J (1992) Comparison of boolean and fuzzy classification methods in land suitability analysis by using geographical information systems. Environ Plan A 24(4):497–516

    Article  Google Scholar 

  • Höfle B, Hollaus M (2010) Urban vegetation detection using high density full-waveform airborne LiDAR data—combination of object-based image and point cloud analysis. ISPRS TC VII symposium-100 years ISPRS, Vienna, 5–7 July 2010, pp 281–286

  • Holzwarth S, Thonfeld F, Abdullahi S, Asam S, Da Ponte CE, Gessner U, Huth J, Kraus T, Leutner B, Kuenzer C (2020) Earth observation based monitoring of forests in Germany: a review. Remote Sens 12:3570. https://doi.org/10.3390/rs12213570

    Article  Google Scholar 

  • Indermühle M, Raetz P, Volz R (2005) LOTHAR Ursächliche Zusammenhänge und Risikoentwicklung. Synthese des Teilprogramms 6. Umwelt-Materialien Nr. 184, Bundesamt für Umwelt, Wald und Landschaft, Bern

  • Jaiswal P, Van Westen CJ, Jetten V (2011) Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides 8:279–291

    Article  Google Scholar 

  • Jiang H, Eastman JR (2000) Application of fuzzy measures in multi-criteria evaluation in GIS. Int J Geogr Inf Sci 14(2):173–184

    Article  Google Scholar 

  • Ke Y, Quackenbush LJ (2011) A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int J Remote Sens 32(17):4725–4747. https://doi.org/10.1080/01431161.2010.494184

    Article  Google Scholar 

  • Kellermann P, Schönberger C, Thieken AH (2016) Large-scale application of the flood damage model railway infrastructure loss (RAIL). Nat Hazard 16:2357–2371. https://doi.org/10.5194/nhess-16-2357-2016

    Article  Google Scholar 

  • Kučera M, Dobesova Z (2021) Analysis of the degree of threat to railway infrastructure by falling tree vegetation. ISPRS Int J Geo-Inf 10:292. https://doi.org/10.3390/ijgi10050292

    Article  Google Scholar 

  • Landesbetrieb Information und Technik Nordrhein-Westfalen (IT-NRW) (2020) Fachkategorie “Bodenkarte”. https://www.opengeodata.nrw.de/produkte/geologie/boden/BK/. Accessed 15 Apr 2020

  • Langanke DHT, Ramminger G, Buzzo G, Berndt F (2017) Copernicus land monitoring service-high resolution layer forest: product specifications document. Copernicus, Copenhagen

    Google Scholar 

  • Larsen M, Eriksson M, Descombes X, Perrin G, Brandtberg T, Gougeon FA (2011) Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions. Int J Remote Sens 32(20):5827–5852

    Article  Google Scholar 

  • Lohmander P, Helles F (1987) Windthrow probability as a function of stand characteristics and shelter. Scand J Res 2:227–238

    Article  Google Scholar 

  • Ludvigsen J, Klæboe R (2014) Extreme weather impacts on freight railways in Europe. Nat Hazards 70(1):767–787

    Article  Google Scholar 

  • Luftbild Umwelt Planung GmbH (LUP) (2019) LUP-ForestWatch. Satellitengestütztes Wald-Monitoring von Vitalitätsänderungen. https://forestwatch.lup-umwelt.de/app/ Accessed 06 May 2021

  • Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, Hoboken

    Google Scholar 

  • Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20(7):703–726

    Article  Google Scholar 

  • Mattsson L-G, Jenelius E (2015) Vulnerability and resilience of transport systems—a discussion of recent research. Transp Res Part a: Policy Pract 81:16–34. https://doi.org/10.1016/j.tra.2015.06.002

    Article  Google Scholar 

  • Mayer H (1988) Kartierung von potentiell sturmgefährdeten Waldstandorten in Bayern. Forstwissenschaftliches Centralblatt 107(1):239–251

    Article  Google Scholar 

  • Mayer H, Schindler D (2002) Forstmeteorologische Grundlagen zur Auslösung von Sturmschäden im Wald im Zusammenhang mit dem Orkan “Lothar.” Allgemeine Forst- Und Jagdzeitung 173:200–208

    Google Scholar 

  • McGaughey E (2018) FUSION/LDV: software for LIDAR data analysis and visualization (2018-17)

  • McInerney D, Kempeneers P (2015) 3D point cloud data processing. In: McInerney D, Kempeneers P (eds) Open source geospatial tools. Springer, Cham, pp 263–282

    Chapter  Google Scholar 

  • Meßenzehl K (2019) Das Naturgefahrenmanagement der DB Netz AG. Auf Den Klimawandel Vorbereiten Deine Bahn 10:16–22

    Google Scholar 

  • Mikita T, Klimánek M (2010) Topographic exposure and its practical applications. J Landsc Ecol 3(1):42–51

    Article  Google Scholar 

  • Munich Re (2012) Topics geo natural catastrophes 2011: analyses, assessments, positions. Munich Re Publications, Munich

    Google Scholar 

  • Netz AG (2019) Richtlinie 882 “Landschaftspflege und Vegetationskontrolle”. Neuausgabe, Frankfurt

  • Päätalo M-L, Peltola H, Kellomäki S (1999) Modelling the risk of snow damage to forests under short-term snow loading. For Ecol Manag 116:51–70

    Article  Google Scholar 

  • Peterson TC, McGuirk M, Houston TG, Horvitz AH, Wehner MF (2008) Climate variability and change with implications for transportation. National Research Council, Washington DC

    Google Scholar 

  • Forestry Thematic Exploitation Platform (Forestry TEP) (2022). Available online: https://f-tep.com/. Accessed 21 Jan 2022

  • Popovic D, Pajic V, Jovanovic D, Sabo F, Radovic J (2017) Semi-automatic classification of power lines by using airborne lidar. FIG working week, Helsinki, 29 May–2 June 2017, 8862

  • Pretzsch H (2019) Grundlagen der Waldwachstumsforschung. Springer, Berlin

    Book  Google Scholar 

  • Quince CP, Gardiner BA (2007) Understanding how the interaction of wind and trees results in windthrow, stem breakage, and canopy gap formation. In: Johnson EA, Miyanishi K (eds) Plant disturbance ecology—the process and the response. Elsevier, Amsterdam, pp 103–155

    Chapter  Google Scholar 

  • Rauhala J, Juga I (2010) Wind and snow storm impacts on society. proceedings of SIRWEC In: 15th International road weather conference, Quebec City, 5–7 Feb 2010

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Ruel JC, Mitchell SJ, Dornier M (2002) A GIS based approach to map wind exposure for wind-throw hazard rating. North J Appl 19(4):183–187

    Google Scholar 

  • Sargent C (1984) Britain’s railway vegetation. Institute of Terrestrial Ecology, Cambridge

    Google Scholar 

  • Schelhaas M-J (2008) The wind stability of different silvicultural systems for Douglas-fir in the Netherlands: a model-based approach. Forestry 81(3):399–414

    Article  Google Scholar 

  • Steffen M, Schipek M, Lohrengel A-F, Meine L (2020) Identification of windthrow-endangered infrastructure combining LiDAR based tree extraction methods using GIS. J Appl Remote Sens 15(1):014522. https://doi.org/10.1117/1.JRS.15.014522

    Article  Google Scholar 

  • Swiss-Re (2012) Natural catastrophes and man-made disasters in 2011: historic losses surface from record earthquakes and floods. Sigma 2/2012, Zurich

  • Vajda A, Tuomenvirta H, Juga I, Nurmi P, Jokinen P, Rauhala J (2014) Severe weather affecting European transport systems: the identification, classification and frequencies of events. Nat Hazards 72:169–188. https://doi.org/10.1007/s11069-013-0895-4

    Article  Google Scholar 

  • Valinger E, Fridman J (2011) Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For Ecol Manage 262(3):398–403

    Article  Google Scholar 

  • Weihgold M (2018) DB erweitert Vegetationsmanagement: “Aktionsplan Vegetation”. Presseinformation 06/2018 der Deutschen Bahn AG

  • Yager R (1988) On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans Syst Man Cybern 8:183–190

    Article  Google Scholar 

  • Yao W, Fan H (2013) Automated detection of 3-D individual trees along urban road corridors by mobile laser scanning systems. proceedings of the international symposium on mobile mapping technology (MMT), Tainan, 1–3 May 2013

  • Zhen Z, Quackenbush LJ, Zhang L (2016) Trends in Automatic individual tree crown detection and delineation—evolution of LiDAR data. Remote Sens 8:333. https://doi.org/10.3390/rs8040333

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the German Federal Ministry for Digital and Transport (BMDV) in the context of the BMDV Network of Experts.

Funding

This study was funded by the German Federal Ministry for Digital and Transport (BMDV) in the context of the BMDV Network of Experts.

Author information

Authors and Affiliations

Authors

Contributions

SS was involved in conceptualization; PB, AF, BS, and KW were involved in methodology and software; FB, PB, AF, BS, and KW were involved in formal analysis; SS, FB, PB, AF, BS, and KW were involved in visualization; SS was involved in writing—original draft; SS, FB, PB, AF, BS, and KW were involved in writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sonja Szymczak.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szymczak, S., Bott, F., Babeck, P. et al. Estimating the hazard of tree fall along railway lines: a new GIS tool. Nat Hazards 112, 2237–2258 (2022). https://doi.org/10.1007/s11069-022-05263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05263-5

Keywords

  • Tree fall hazard
  • Exposure analysis
  • Vegetation monitoring
  • Remote sensing