Skip to main content

Advertisement

Log in

Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Nile River provides Egypt with most of its water resources. Medium- and long-rage forecasts of Nile flows at Aswan have been recognized as of significant importance to allow better management and operation of the water resource facilities and mitigate the risks of both droughts and floods. In this study, a wide range of climate indices and atmospheric fields were used as potential predictors for long-range forecasting of Nile streamflow for one flood season ahead (July–October). The approach followed in this study focuses on searching for potential predictors, reducing the pool of potential predictors by using multivariate statistical analysis, applying sequentially, Canonical Correlation Analysis, Principal Component Analysis, and multiple linear regression to robustly forecast the Nile flow. The proposed approach proved to be very useful for improving long-range Nile River flow forecasting. It revealed the adequacy of the models and enhanced the accuracy of the predictions of the full spectrum of droughts and floods, both in the calibration and validation phases, over the simple stepwise regression method using all climate indices and atmospheric fields as potential predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrahart RJ, Anctil F, Coulibaly P, Dawson CW, Mount NJ, See LM, Shamseldin AY, Solomatine DP, Toth E, Wilby RL (2012) Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog Phys Geogr 36(4):480–513

    Google Scholar 

  • Alexander S, Yang G, Addisu G, Block P (2020) Forecast-informed reservoir operations to guide hydropower and agriculture allocations in the Blue Nile basin Ethiopia. Int J Water Resour Dev. https://doi.org/10.1080/07900627.2020.1745159

    Article  Google Scholar 

  • Al-Zu’bi Y, Sheta A, Al-Zu’bi J (2010) Nile River flow forecasting based Takagi-Sugeno fuzzy model. J Appl Sci 10(4):284–290

    Google Scholar 

  • Antar MA, Elassiouti I, Allam MN (2006) Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study. Hydrol Process 20(5):1201–1216

    Google Scholar 

  • Awadallah AG, Rousselle J (2000) Improving forecasts of Nile flood using SST inputs in TFN model. J Hydrol Eng 5(4):371–379

    Google Scholar 

  • Barlow M (2006) Predictability of Central Asia river flows: the role of regional and large-scale climate variability. Geophys Res Abstract 8:08338

    Google Scholar 

  • Barlow M, Tippett M (2005) Predicting Central Asian river flows from regional precipitation and wind patterns during the preceding cold season. IAHS-AISH publication. pp 221–227

  • Barnston AG (1994) Linear statistical short-term climate predictive skill in the Northern Hemisphere. J Clim 7(10):1513–1564

    Google Scholar 

  • Barnston AG, He Y (1996) Skill of canonical correlation analysis forecasts of 3-month mean surface climate in Hawaii and Alaska. J Clim 9(10):2579–2605

    Google Scholar 

  • Basak GK, Chan NH, Palma W (2001) The approximation of long-memory processes by an ARMA model. J Forecast 20(6):367–389

    Google Scholar 

  • Berhane F, Zaitchik B, Dezfuli A (2014) Subseasonal analysis of precipitation variability in the Blue Nile River Basin. J Clim 27(1):325–344

    Google Scholar 

  • Beyene T, Lettenmaier DP, Kabat P (2010) Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios. Clim Change 100(3):433–461

    Google Scholar 

  • Birhan MW, Raju JP, Kenea ST (2019) Seasonal variation of upper Blue Nile basin moisture budget and the global moisture dynamics in the role of spatiotemporal precipitation variability, preprints. https://doi.org/10.20944/preprints201901.0117.v2

  • Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic Vs Enso. Int J Climatol 21:973–1005

    Google Scholar 

  • Cardoso AO, Dias PS (2006) The relationship between ENSO and Paraná River flow. Adv Geosci 6:189–193

    Google Scholar 

  • Climate Data Guide (2015) NAO SST data. Retreived from https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based

  • Conway DA (1997) A water balance model of the Upper Blue Nile in Ethiopia. Hydrol Sci J 42(2):265–286

    Google Scholar 

  • Conway DA (2000) The climate and hydrology of the Upper Blue Nile River. Geograph J 166:49–62

    Google Scholar 

  • Conway D, Hulme M (1993) Recent fluctuations in precipitation and runoff over the Nile sub-basins and their impact on main Nile discharge. Clim Change 25(2):127–151

    Google Scholar 

  • Dibike YB, Solomatine DP (2001) River flow forecasting using artificial neural networks. Phys Chem Earth Part B 26(1):1–7

    Google Scholar 

  • Dobbin KK, Simon RM (2011) Optimally splitting cases for training and testing high dimensional classifiers. BMC Med Genom 4:31

    Google Scholar 

  • Eldaw AK, Salas JD, Garcia LA (2003) Long-range forecasting of the Nile River flows using climatic forcing. J Appl Meteorol 42(7):890–904

    Google Scholar 

  • El-Fandy MG, Taiel SMM, Ashour ZH (1994) Time series models adoptable for forecasting Nile floods and Ethiopian rainfalls. Bull Am Meteor Soc 75(1):83–94

    Google Scholar 

  • Elsanabary MH, Gan TY (2014) Weekly streamflow forecasting using a statistical disaggregation model for the upper Blue Nile basin. Ethiopia J Hydrol Eng 20(5):04014064

    Google Scholar 

  • El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour Manag 21(3):533–556

    Google Scholar 

  • El-Shafie A, Abdin AE, Noureldin A, Taha MR (2009) Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements. Water Resour Manag 23(11):2289–2315

    Google Scholar 

  • Eltahir EAB (1996) El Nino and the natural variability in the flow of the Nile River. Water Resour Res 32(1):131–137

    Google Scholar 

  • ESRL (2015a) Rainfall data. Retreived from http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html#detail

  • ESRL (2015b) Kaplan monthly SST anomalies data. Retreived from http://www.esrl.noaa.gov/psd/data/gridded/data.kaplan_sst.html#detail

  • ESRL (2015c) SOI data. Retreived from http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/SOI/

  • ESRL (2015d) HadISST1 monthly SST data. Retreived from http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/

  • ESRL (2015e) MEI SST data. Retreived from http://www.esrl.noaa.gov/psd/enso/mei/

  • Fernando A, Shamseldin A, Abrahart R (2011) Comparison of two data-driven approaches for daily river flow forecasting. In: Proceedings of the MODSIM2011, 19th international congress on modelling and simulation, pp 1077–1083

  • Hair JF, Black WC, Babin BJ, Anderson RE (2010) Multivariate data analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Hsieh WW (2000) Nonlinear canonical correlation analysis by neural networks. Neural Netw 13:1095–1105

    Google Scholar 

  • Hsieh WW (2001) Nonlinear canonical correlation analysis of the tropical Pacific climate variability using a neural network approach. J Clim 14:2528–2539

    Google Scholar 

  • Hsieh WW (2004) Nonlinear multivariate and time series analysis by neural network methods. Rev Geophys 42:RG1003

    Google Scholar 

  • JAMSTEC (2015) DMI SST data. Retreived from http://www.jamstec.go.jp/frcgc/research/d1/iod/HTML/Dipole%20Mode%20Index.htm

  • JISAO (2015a) PDO data. Retreived from http://research.jisao.washington.edu/pdo/.

  • JISAO (2015b) CTI data. Retreived from http://research.jisao.washington.edu/data_sets/cti/

  • JISAO (2015c) ICOADS data. Retreived from http://research.jisao.washington.edu/data_sets/global_sstanomts/

  • Jury MR (2004) The coherent variability of African river flows: Composite climate structure and the Atlantic circulation. Water Sa 29(1):1–10

    Google Scholar 

  • Kennedy AM, Garen DC, Koch RW (2009) The association between climate teleconnection indices and Upper Klamath seasonal streamflow: trans-Niño INdex. Hydrol Process 23(7):973–984

    Google Scholar 

  • Koch RW, Fisher AR (2000) Effects of inter-annual and decadal-scale climate variability on winter and spring streamflow in western Oregon and Washington. In: Proceedings of the 68th annual Western Snow Conference (pp. 1–11)

  • Kondrashov D, Feliks Y, Ghil M (2005) Oscillatory modes of extended Nile River records (AD 622–1922). Geophys Res Lett. https://doi.org/10.1029/2004GL022156

    Article  Google Scholar 

  • Krishna B, Satyaji YR (2011) Time series modeling of river flow using wavelet neural networks. J Water Resour Protect. https://doi.org/10.4236/jwarp.2011.31006

    Article  Google Scholar 

  • Lamb PJ, Peppler RA (1991) West Africa. In: Glantz MH, Katz RW, Nicholls N (eds) Teleconnections linking worldwide climate anomalies: Scientific bases and societal impact. Cambridge University Press, Cambridge, pp 121–189

    Google Scholar 

  • METOFFICE, 2015. HadISST1 monthly SST Data, Retreived from http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html

  • NASA (2015) LOTI Data. Retreived from http://data.giss.nasa.gov/gistemp/

  • Nicholson SE (1997) An analysis of the ENSO signal in the tropical Atlantic and Western Indian Oceans. Int J Climatol 17:345–375

    Google Scholar 

  • Nile Water Sector, MWRI, 2010. personal communication: Eng. Ahmed Fahmi, Nile Water Sector

  • Opitz-Stapleton S, Gangopadhyay S, Rajagopalan B (2007) Generating streamflow forecasts for the Yakima River Basin using large-scale climate predictors. J Hydrol 341(3):131–143

    Google Scholar 

  • Osman YZ, Abdellatif ME (2013) El Nino Cycles and variability of the Blue Nile annual flow in the Sudan. In: Proceedings of the international conference on climate change effects

  • Philander SGH (1986) Unusual conditions in the tropical Atlantic Ocean in 1984. Nature 322(6076):236–238

    Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6(3):293–335

    Google Scholar 

  • Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin southern oscillation index. Mon Weather Rev 115(9):2161–2165

    Google Scholar 

  • Salas JD, Fu C, Rajagopalan B (2010) Long-range forecasting of Colorado streamflows based on hydrologic, atmospheric, and oceanic data. J Hydrol Eng 16:508

    Google Scholar 

  • Seleshi Y (1996) Stochastic predictions of summer rainfall amounts over the Northeast African Highlands and over India. Vrije Universiteit Brussel (VUB), Brussels

    Google Scholar 

  • Seleshi Y, Demaree GR, Delleur JW (1994) Sunspot numbers as a possible indicator of annual rainfall at Addis Ababa, Ethiopia. Int J Climatol 14:911–923

    Google Scholar 

  • Shamseldin AY (2010) Artificial neural network model for river flow forecasting in a developing country. J Hydroinf 12(1):22–35

    Google Scholar 

  • Shamseldin AY, Abdo GM, Elzein AS (1999) Real-time flood forecasting on the Blue Nile River. Water Int 24(1):39–45

    Google Scholar 

  • Siam MS, Eltahir EA (2015) Explaining and forecasting interannual variability in the flow of the Nile River. Hydrol Earth Syst Sci 19(3):1181–1192

    Google Scholar 

  • Siam MS, Wang G, Demory ME, Eltahir EA (2014) Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River. Clim Dyn 43(3–4):1011–1023

    Google Scholar 

  • SILSO (2015) Sunspot numbers data. Retreived from http://www.sidc.be/silso/datafiles

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14(8):1697–1701

    Google Scholar 

  • Viste E, Sorteberg A (2013) Moisture transport into the Ethiopian highlands. Int J Climatol 33(1):249–263

    Google Scholar 

  • Von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press

    Google Scholar 

  • Wang G, Eltahir EA (1999) Use of ENSO information in medium-and long-range forecasting of the Nile floods. J Clim 12(6):1726–1737

    Google Scholar 

  • Weare BC, Nasstrom JS (1982) Examples of extended empirical orthogonal function analyses. Mon Weather Rev 110(6):481–485

    Google Scholar 

  • Wright PB (1989) Homogenized long-period Southern Oscillation indices. Int J Climatol 9(1):33–54

    Google Scholar 

  • Yasuda H, Panda SN, Abd Elbasit MAM, Kawai T, Elgamri T, Fenta AA, Nawata H (2018) Teleconnection of rainfall time series in the central Nile Basin with sea surface temperature. Paddy Water Environ, 16:805–821

    Google Scholar 

  • Zaroug MA, Eltahir EA, Giorgi F (2014) Droughts and floods over the upper catchment of the Blue Nile and their connections to the timing of El Niño and La Niña Events. Hydrol Earth Syst Sci Discuss 10(8):10971–10995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled H. Hamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H.M., Awadallah, A.G., El-Zawahry, A.ED.M. et al. Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks. Nat Hazards 110, 741–763 (2022). https://doi.org/10.1007/s11069-021-04968-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04968-3

Keywords

Navigation