Skip to main content

Social and environmental vulnerability in Southeast Brazil associated with the South Atlantic Convergence Zone


The South Atlantic Convergence Zone (SACZ) is an atmospheric phenomenon, typical of summertime, in which a band of nebulosity may cause intense or persistent rainfall in many regions of Brazil. The association between this natural event and human interventions is a major factor for the occurrence of social and environmental impacts such as floods, flash floods, inundations, and landslides. In this work, we objectively quantify the relationship between the SACZ and the incidence of natural hazards in Southeast Brazil from 1995 to 2016. We use official records of disasters, from the digital archive of the Integrated Disaster Information System (S2ID) and time series of SACZ events, to calculate conditional probabilities of SACZ events, given the occurrence of disasters in the states of Southeast Brazil. We also analyze which types of natural disaster are most prevalent during SACZ events. The average probability of disaster occurrence, given the presence of the SACZ in the Southeast Brazil, is 24%, while the average conditional probability of SACZ occurrence, given a disaster in the Southeast, is 48%. For each state in Southeast Brazil, the probabilities are higher for Espírito Santo (60%), followed by Minas Gerais (50%), Rio de Janeiro (40%) and São Paulo (31%). These results evidence the vulnerability of Southeast Brazil associated with intense or persistent rainfall typical of the SACZ phenomenon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Ambrizzi T, Ferraz S (2015) An objective criterion for determining the South Atlantic convergence zone. Front Environ Sci 3:1–9.

    Article  Google Scholar 

  2. Avelar DS, Luiza A, Netto C et al (2013) Landslide science and Practice. Landslide Sci Pract.

    Article  Google Scholar 

  3. Barros V, Gonzalez M, Liebmann B, Camilloni I (2000) Influence of the South Atlantic convergence zone and South Atlantic Sea surface temperature on interannual summer rainfall variability in Southeastern South America. Theor Appl Climatol 67:123–133.

    Article  Google Scholar 

  4. Bou FAS, De Sá RV, Cataldi M (2015) Flood forecasting in the upper Uruguay river basin. Nat Hazards 79:1239–1256.

    Article  Google Scholar 

  5. Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in Southeastern South America and large-scale convective patterns in the South Atlantic covergence zone. J Clim 15:2377–2394.;2

    Article  Google Scholar 

  6. Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17:88–108.;2

    Article  Google Scholar 

  7. Castro AMDD (2003) Manual de Desastres - Desastres Naturais, vol I. Secretaria Nacional de Defesa Civil, Brasília, DF

    Google Scholar 

  8. CEPED UFSC (2013). Brazilian Atlas of Natural Disasters 1991 to 2012. Centro de Estudos e Pesquisas em Engenharia e Defesa Civil - Universidade Federal de Santa Catarina, Brazil, 2°:126

  9. Climanálise (2011) Boletim de Monitoramento e Análise Climática, vol 26, no 1. Centro de Previsão do Tempo e Estudos Climáticos and Instituto Nacional de Pesquisas Espaciais (CPTEC/INPE), Brazil. Accessed November 2020.

  10. Deina MA, Coelho ALN (2015) The Influence of the South Atlantic Convergence Zone (SACZ) in Flood Events in Baixo Jucu in Vila Velha (ES). Geogr Londria 24:5–23

    Google Scholar 

  11. Espírito Santo CM, Satyamurty P (2002) Eventos extremos de precipitação na região sudeste do Brasil e redondezas no período de 1997–2001. XII Congresso Brasileiro de Meteorologia, Foz de Iguaçu-PR

    Google Scholar 

  12. Figueroa NS, Satyamurty P, Da Silva Dias PL (1995) Simulations of the summer circulation over the South American region with an ETA coordinate model. J Atmos Sci 52:1573–1584

    Article  Google Scholar 

  13. Gandu AW, Silva Dias PL (1998) Impact of tropical heat sources on the South American tropospheric upper circulation and subsidence. J Geophys Res Atmos 103:6001–6015.

    Article  Google Scholar 

  14. Highland LM, Bobrowsky P (2008) The landslide handbook—A guide to landslide understandings: Reston, Virginia. U.S, Geological Survey Circular, p 1325

    Google Scholar 

  15. Instituto Brasileiro de Geografia e Estatística—IBGE (2010) Censo Brasileiro de 2010, Rio de Janeiro

  16. Knocke ET, Kolivras KN (2007) Flash flood awareness in Southwest Virginia. Risk Anal 27:155–169.

    Article  Google Scholar 

  17. Kobiama M, Mendonça M, Moreno DA et al (2006) Prevenção de desastres naturais: conceitos, básicos. Organic Trading, Florianópolis, Santa Catarina, Brazil

  18. Kodama Y-M (1992). Large-scale common features of sub-tropical precipitation zones (the Baiu Frontal Zone, the SPCZ, and the SACZ). Part I: characteristics of subtropical frontal zones. Chem Bull Pharm 2091

  19. Lejeune Q, Davin EL, Guillod BP, Seneviratne SI (2015) Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim Dyn 44:2769–2786.

    Article  Google Scholar 

  20. Lenters JD, Cook KH (1995) Simulation and diagnosis of the regional summertime precipitation climatology of South America. J Clim 8:2988–3005

    Article  Google Scholar 

  21. Liebmann B, Kiladis GN, Vera CS et al (2004) Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J Clim 17:3829–3842.;2

    Article  Google Scholar 

  22. Lima KC, Satyamurty P, Fernández JPR (2010) Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil. Theor Appl Climatol 101:121–135.

    Article  Google Scholar 

  23. Luz Barcellos PC, da Silva FP, Vissirini FSB et al (2016) Diagnóstico Meteorológico dos Desastres Naturais Ocorridos nos Últimos 20 Anos na Cidade de Duque de Caxias. Rev Bras Meteorol. 31:319–329.

    Article  Google Scholar 

  24. Malvestio L (2013). Variabilidade da precipitação pluviométrica da região sudeste do Brasil no período chuvoso e suas consequências ambientais. Dissertation, Universidade Estadual de Campinas, Campinas, Brazil

  25. Marengo JA (2004) Interdecadal variability and trends of rainfall across the Amazon basin. Theor Appl Climatol 78:79–96.

    Article  Google Scholar 

  26. Mendonca MB, Valois AS (2017) Disaster education for landslide risk reduction: an experience in a public school in Rio de Janeiro State, Brazil. Nat Hazards 89:351–365.

    Article  Google Scholar 

  27. Morettin PA, Bussab W (1987). Basic Statistics, 4th Edn. São Paulo, Current Editor.

  28. Muza MN, Carvalho LMV, Jones C, Liebmann B (2009) Intraseasonal and interannual variability of extreme dry and wet events over southeastern South America and the subtropical Atlantic during austral summer. J Clim 22:1682–1699.

    Article  Google Scholar 

  29. NOAA National Severe Storms Laboratory. (n.d.) Severe Weather 101 – Flood Basics. Retrieved June 10, 2021 from

  30. Nielsen DM, Cataldi M, Belém AL, Albuquerque ALS (2016) Local indices for the South American monsoon system and its impacts on Southeast Brazilian precipitation patterns. Nat Hazards 83:909–928.

    Article  Google Scholar 

  31. Nielsen DM, Belém AL, Marton E, Cataldi M (2019) Dynamics-based regression models for the South Atlantic convergence zone. Clim Dyn 52:5527–5553.

    Article  Google Scholar 

  32. Quadro MFL (1994) Estudo de episódios de zonas de convergência do Atlântico Sul (ZCAS) sobre a América do Sul. Rev Bras Geofísica 17:210–210.

    Article  Google Scholar 

  33. Seluchi ME, Chou SC (2009) Synoptic patterns associated with landslide events in the Serra do Mar, Brazil. Theor Appl Climatol 98:67–77.

    Article  Google Scholar 

  34. Sweeney TL (1992) Modernized Areal Flash Flood Guidance NOAA Technical Memorandum NWS Hydro 44. National Weather Service, Silver Spring, MD

    Google Scholar 

  35. UNISDR (2009) Terminology on Disaster Risk Reduction. Publishing United Nations Office for Disaster Risk Reduction. Accessed 14 May 2020

  36. Vera C, Higgins W, Amador J et al (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000.

    Article  Google Scholar 

Download references


The authors have no relevant financial or non-financial interests to disclose.

Author information




All authors contributed to the study conception and design.

Corresponding author

Correspondence to Louise da Fonseca Aguiar.

Ethics declarations

Conflict of interest

No conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Fonseca Aguiar, L., Cataldi, M. Social and environmental vulnerability in Southeast Brazil associated with the South Atlantic Convergence Zone. Nat Hazards (2021).

Download citation


  • South Atlantic Convergence Zone
  • Natural hazards
  • Intense rainfall
  • Conditional probability
  • Landslides
  • Flash floods