Skip to main content

Advertisement

Log in

Development of a GIS-based alert system to mitigate flash flood impacts in Asyut governorate, Egypt

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Egypt is one Arab country that is vulnerable to flash floods caused by heavy and intensive rainfall. Different locations in Egypt are vulnerable to the hazards of flash floods, especially in Upper Egypt. Throughout history, Egypt witnessed a series of events of flash floods that lead to mortality, damages, and economic losses. The intensity and frequency of flash floods in Egypt vary from year to year according to a number of hydrological and climatological variables. Although several previous flash floods studies have been conducted in Egypt, studies on the governorate of Asyut are still limited. This study integrates the physical and social parameters in order to assess the vulnerability to flash floods. The objectives of this study are to shed light on flash floods in the study area, develop a vulnerability model to determine the regions vulnerable to the impacts of flash floods, and propose a flash flood alert system in the governorate of Asyut in Egypt to mitigate the impacts of flash floods and to avoid the loss of life and property. The AHP (analytical hierarchy process) is used for assigning the optimal criterion weight of the considered vulnerability parameters based on the responses of eight expert respondents to an online Google forms questionnaire. The highest weighted flash floods causative parameters are population density (27.4%), precipitation (22.1%), total population (16.4%), and elevation (10.2%), respectively. The results reveal that Asyut is one of the Egyptian governorates prone to flash floods’ impacts, especially in Dayrut, Al-Qusiyah, and Abnub, urban districts. The findings of this study are expected to be useful to policymakers and responsible authorities for better disaster risk management and for dealing with the flash floods events in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abd-El Monsef H (2018) A mitigation strategy for reducing flood risk to highways in arid regions: a case study of the El-Quseir–Qena highway in Egypt. J Flood Risk Manag 11:159–172. https://doi.org/10.1111/jfr3.12190

    Article  Google Scholar 

  • Abdel-Fattah M, Saber M, Kantoush SA, Khalil MF, Sumi T, Sefelnasr AM (2017) A hydrological and geomorphometric approach to understanding the generation of Wadi flash floods. Water 9:553. https://doi.org/10.3390/w9070553

    Article  Google Scholar 

  • Abuzied SM, Mansour BMH (2018) Geospatial hazard modeling for the delineation of flash flood-prone zones in Wadi Dahab basin, Egypt. J Hydroinf 21(1):180–206. https://doi.org/10.2166/hydro.2018.043

    Article  Google Scholar 

  • Alfieri L, Berenguer M, Knechtl V, Liechti K, Sempere-Torres D (2015) Flash flood forecasting based on rainfall thresholds. Handbook of hydrometeorological ensemble forecasting. Springer Berlin Heidelberg, Berlin

  • Ali H, Mishra V (2017) Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-01306-1

    Article  Google Scholar 

  • Ali SA, Parvin F, Pham QB, Vojtek M, Vojteková J, Costache R, Linh NTT, Nguyen HQ, Ahmad A, Ghorbani MA (2020) GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia. Ecol Ind 117(106620):1–23. https://doi.org/10.1016/j.ecolind.2020.106620

    Article  Google Scholar 

  • Arab Republic of Egypt, Central Agency for Public Mobilization and Statistics, CAPMAS, Statistical Year Book of ARE’, 2016. http://www.capmas.gov.eg

  • Aroca-Jimenez E et al (2017) Construction of an integrated social vulnerability index in urban areas prone to flash flooding. Nat Hazards Earth Syst Sci 17:1541–1557. https://doi.org/10.5194/nhess-17-1541-2017

    Article  Google Scholar 

  • Ashmawy MH, Nassim AS (1998) Hydrological impact and assessment of morphometric aspects of Wadi El-Assiuti Basin, Eastern Desert. J Remote Sens Space Sci 1:207–232

    Google Scholar 

  • Ashour MM (2002) Flashfloods in Egypt (a case study of Drunka village–Upper Egypt). Bull Soc Geog Egypte 75:101–114

    Google Scholar 

  • Attia MKK, Shendi MM, El-Desoky MA, Mohamed AGh (2016) The use of RS and GIS for assessment of Wadi El-Assiuty soils, Egypt. Assiut J Agric Sci 47(5):192–220

    Google Scholar 

  • Azmeri A, Isa AH (2018) An analysis of physical vulnerability to flash floods in the small mountainous watershed of Aceh Besar Regency, Aceh province, Indonesia. Jamba 10(1):550. https://doi.org/10.4102/jamba.v10i1.550

    Article  Google Scholar 

  • Azmeria A, Hadihardaja IK, Vadiya R (2016) Identification of flash flood hazard zones in mountainous small watershed of Aceh Besar Regency, Aceh Province, Indonesia. Egyptian J Remote Sens Space Sci 19(1):143–160. https://doi.org/10.1016/j.ejrs.2015.11.001

    Article  Google Scholar 

  • Barasa BN, Perera EDP (2018) Analysis of land use change impacts on flash flood occurrences in the Sosiani River basin Kenya. Int J River Basin Manag 16(2):179–188. https://doi.org/10.1080/15715124.2017.1411922

    Article  Google Scholar 

  • Bhuiyan TR, Hasan MI (2018) Direct Impact of Flash Floods in Kuala Lumpur City: Secondary Data-Based Analysis. ASM Sci J 11(3):145–157

    Google Scholar 

  • Borga M, Stoffel M, Marchi L, Marra F, Jakob M (2014) ‘Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flow. J Hydrol 518:194–205. https://doi.org/10.1016/j.jhydrol.2014.05.022

    Article  Google Scholar 

  • Brémond P, Grelot F, Agenais AL (2013) Flood damage assessment on agricultural areas: review and analysis of existing methods. Hazards Earth Syst. Sci.

  • Calianno M, Ruin I, Gourley JJ (2013) Supplementing flash flood reports with impact classifications. J Hydrol 477:1–16. https://doi.org/10.1016/j.jhydrol.2012.09.036

    Article  Google Scholar 

  • Cools J, Vanderkimpen P, El Afandi G, Abdelkhalek A, Fockedey S, El Sammany M, Abdalla G, El Bihery M, Bauwens W, Huygens M (2012) An early warning system for flash floods in hyper-arid Egypt. Nat Hazards Earth Syst Sci 12:443–457. https://doi.org/10.5194/nhess-12-443-2012

    Article  Google Scholar 

  • Cozannet GL, Garcin M, Bulteau T, Mirgon C, Yates ML, Mendez M, Baills A, Idier D, Oliveros C (2013) An AHP-derived method for mapping the physical vulnerability of coastal areas at regional scales. Nat Hazard Earth Syst Sci 13:1209–1227

    Article  Google Scholar 

  • Dano UL (2020) Flash flood impact assessment in Jeddah City: an analytic hierarchy process approach. Hydrology 7(10):1–15. https://doi.org/10.3390/hydrology7010010

    Article  Google Scholar 

  • Dankers R, Arnell NW, Clark DB, Falloon PD, Fekete BM, Gosling SN, Heinkef J, Kimh H, Masakii Y, Satohj Y, Stackek T, Wadal Y, Wisser D (2014) First look at changes in flood hazard in the Inter-Sectoral Impact Model Inter-comparison Project ensemble. Proc Natl Acad Sci 111(9):3257–3261

    Article  Google Scholar 

  • Dewan TH (2015) Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather Clim Extremes 7:36–42. https://doi.org/10.1016/j.wace.2014.11.001

    Article  Google Scholar 

  • Du W, FitzGerald GJ, Clark M, Hou XY (2010) Health impacts of floods. Prehosp Disaster Med 25(3):265–272

    Article  Google Scholar 

  • El Meligy EM (2004) Groundwater resources evaluation of Assiut area. Ph.D. thesis, Fac. Sci., Assiut Univ., Egypt

  • El-Abd EA, Shabana AR, El-Sheikh AE (2011) Hydrogeological evaluation of west Dirout-Assiut area, Egypt. Egypt J Geol 55:14–31

    Google Scholar 

  • El-Bastawesy M, Ali RR, Nasr AH (2008) The use of remote sensing and GIS for catchments delineation in Northwestern Coast of Egypt: an assessment of water resources and soil potential, Egypt. J Remote Sens Sp Sci 10:1–13

    Google Scholar 

  • El-Behiry MG, Shedid A, Abu-Khadra A, El-Huseiny M (2006) Integrated GIS and remote sensing for runoff hazard analysis in Ain Sukhna industrial area, Egypt. Earth Sci 17:19–42

    Google Scholar 

  • Elewa HH, Fathy RG (2005) Recent recharge possibilities determination of the Pleistocene aquifer system of Wadi El-Assiuti basin, Egypt, using hydrogeochemical and environmental isotopic criteria. J Appl Geophys 4(2):41–57

    Google Scholar 

  • Elmoustafa AM, Mohamed MM (2013) Flash flood risk assessment using morphological parameters in Sinai Peninsula. Open J Modern Hydrol 3:122–129. https://doi.org/10.4236/ojmh.2013.33016

    Article  Google Scholar 

  • El-Rakaiby ML (1989) Drainage basins and flash flood hazard in selected parts of Egypt. Egypt J Geol 33:307–323

    Google Scholar 

  • Elsadek WM, Ibrahim MG, Mahmod WE (2018) Flash flood risk estimation of Wadi Qena Watershed, Egypt using GIS based morphometric analysis. App Envi Res 40(1):41–50

    Google Scholar 

  • El-Sawy EK, Bekhiet MH, Abd El-Motaal E, Orabi AA, Abd El-Gany MK (2011) Geo-Environmental Studies on Wadi Qena, Eastern Desert, Egypt by Using Remote Sensing Data and GIS. Al-Azhar Bull Sci 22(2):33–60

    Article  Google Scholar 

  • El-Shamy IZ (1992) Recent recharge and flash flooding opportunities in the Eastern Desert, Egypt. Ann Geol Surv Egypt 18:323–334

    Google Scholar 

  • Elzawahry A, Elgamal M, Imam Y, Alrahbi H, Elshikaly S (2006) Flash floods-roads interaction: experience from the Arab Region. Third Gulf conference on roads (TGCR06), pp 477–486

  • Ezz H (2017) The utilization of GIS in revealing the reasons behind flooding Ras Gharib City, Egypt. Int J Eng Res Afr 31:135–142

    Article  Google Scholar 

  • Farhan Y, Anaba O, Salim A (2016) Morphometric analysis and flash floods assessment for drainage basins of the Ras En Naqb Area, South Jordan Using GIS. J Geosci Environ Protect. https://doi.org/10.4236/gep.2016.46002

    Article  Google Scholar 

  • Frazier TW, Thompson L, Youngstrom EA, Law P, Hardan AY, Eng C, Morris N (2014) A twin study of heritable and shared environmental contributions to autism. J Autism Dev Disord 44(8):2013–2025. https://doi.org/10.1007/s10803-014-2081-2

    Article  Google Scholar 

  • Gabr S, El-Bastawesy M (2015) Estimating the flash flood quantitative parameters affecting the oil-fields infrastructures in Ras Sudr, Sinai, Egypt, during the January 2010 Event. Egyptian J Remote Sens Space Sci 18:137–149

    Article  Google Scholar 

  • Ghaffar AMK, Abdellatif AD, Azzam MA, Riad MH (2015) Watershed characteristic and potentiality of Wadi El-Arish, Sinai, Egypt. Int J Adv Remote Sens GIS 4(1):1070–1091

    Article  Google Scholar 

  • Ghany MKA (2015) Quantitative morphometric analysis of drainage basins between Qusseir and Abu Dabbab Area, Red Sea Coast, Egypt using GIS and Remote Sensing Techniques. Int J Adv Remote Sens GIS 4(1):1295–1322. http://technical.cloud-journals.com/index.php/IJARSG/article/view/Tech-478

  • Grillakisa MG, Koutroulisa AG, Komma J, Tsanis IK, Wagner W, Blösch G (2016) Initial soil moisture effects on flash flood generation—a comparison between basins of contrasting hydro-climatic conditions. J Hydrol 541:206–217. https://doi.org/10.1016/j.jhydrol.2016.03.007

    Article  Google Scholar 

  • Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359. https://doi.org/10.1007/s12040-011-0082-5

    Article  Google Scholar 

  • Halounova L, Holubec V (2014) Assessment of flood with regards to land cover changes. Procedia Econ Finance 18:940–947. https://doi.org/10.1016/S2212-5671(14)01021-1

    Article  Google Scholar 

  • Hong Y, Adhikari P, Gourley JJ (2012) lash flood. Encyclopedia of Natural Hazards. Encyclopedia of earth science series. Springer, pp 324–325. https://doi.org/10.1007/978-1-4020-4399-4_136

  • Intergovernmental Panel on Climate Change (IPCC), Solomon S et al. (eds) Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York (2007)

  • Jenson S, Domingue J (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54:1593–1600

    Google Scholar 

  • Karagiorgos K, Heiser M, Thaler T, Hübl J, Fuchs S (2016) Micro-sized enterprises: vulnerability to flash floods. Nat Hazards 84(2):1091–1107

    Article  Google Scholar 

  • Khan MNH, Mia MY, Hossain MR (2012) Impacts of flood on crop production in Haor areas of two upazillasin Kishoregonj. J Environ Sci Nat Resour 5(1):193–198

    Google Scholar 

  • Korany EA, Tempel RN, Gomaa MA, Mohamed RG (2013) Detecting the roles of the physiochemical processes on groundwater evolution, Assiut Area, Egypt—applications of hydrogeochemical and isotopic approaches. Egypt J Geol 57:63–83

    Google Scholar 

  • Kvoĉka D, Ahmadian R, Falconer RA (2017) Flood inundation modelling of flash floods in steep river basins and catchments. Water 9(705):1–16. https://doi.org/10.3390/w9090705

    Article  Google Scholar 

  • Lotsari ES, Calle M, Benito G, Kukko A, Kaartinen H, Hyyppä J, Hyyppä H,Alho P (2018) Topographical change caused by moderate and small floods in a gravel bed ephemeral river—a depth-averaged morphodynamic simulation approach. Earth Surf Dyn 6:163–185. https://doi.org/10.5194/esurf-6-163-2018

    Article  Google Scholar 

  • Booij MJ (2005) Impact of climate change on river flooding assessed with different spatial model resolutions. J Hydrol 303(1):176–198

    Article  Google Scholar 

  • Maghsood FF, Moradi H, Bavani ARM, Panahi M, Berndtsson R, Hashemi H (2019) Climate change impact on flood frequency and source area in Northern Iran under CMIP5 Scenarios. Water 11:273. https://doi.org/10.3390/w11020273

    Article  Google Scholar 

  • Mashaly J, Ghoneim E (2018) Flash flood hazard using optical, radar, and stereo-pair derived DEM: Eastern Desert, Egypt. Remote Sens 10(8):1204. https://doi.org/10.3390/rs10081204

    Article  Google Scholar 

  • Michaud R, Pilon PJ (2006) Hydrologic hazards. In: Melching CS, Pilon PJ (eds) World Meteorological Organization/TD, No. 955

  • Milly PCD, Wetherald RT, Dunner KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415:514–517. https://doi.org/10.1038/415514a

    Article  Google Scholar 

  • Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to moreintense precipitation extremes. Nature. https://doi.org/10.1038/nature09763

    Article  Google Scholar 

  • Moawad BM (2013) Analysis of the flash flood occurred on 18 January 2010 in Wadi El-Arish, Egypt (a case study). Geomatics Nat Hazards Risk 4(3):254–274

    Article  Google Scholar 

  • Moawad MB, Abdel Aziz AO, Mamtiminy B (2014) Flash floods in the Sahara: a case study for the 28 January 2013 flood in Qena, Egypt. Geomat Nat Haz Risk. https://doi.org/10.1080/19475705.2014.885467

    Article  Google Scholar 

  • Modrick TM, Georgakakos KP (2015a) The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change. J Hydrol Reg Stud 3:312–336

    Article  Google Scholar 

  • Modrick TM, Georgakakos KP (2015) The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change

  • Mohamed SA (2019a) Application of geo-spatial analytical hierarchy process and multi-criteria analysis for site suitability of the desalination solar stations in Egypt. J Afr Earth Sci

  • Mohamed SA (2019b) Application of satellite image processing and GIS-spatial modeling for mapping urban areas prone to flash floods in Qena Governorate, Egypt. J Afr Earth Sci 158:103507. https://doi.org/10.1016/j.jafrearsci.2019.05.015

    Article  Google Scholar 

  • Mohamed SA, El-Raey ME (2018) Monitoring and predicting land use/land cover changes in Alexandria City using land cover modeler and Markov Chain. Ass Univ Bull Environ Res 22(2)

  • Mohamed SA, El-Raey ME (2019a) Land cover classification and change-detection analysis of Qaroun and Wadi El-Rayyan Lakes using multi-temporal remotely sensed imagery. Environ Monit Assess 191:229. https://doi.org/10.1007/s10661-019-7339-x

    Article  Google Scholar 

  • Mohamed SA, El-Raey ME (2019b) Vulnerability assessment for flash floods using GIS spatial modeling and remotely sensed data in El-Arish City, North Sinai, Egypt. Nat Hazards. https://doi.org/10.1007/s11069-019-03571-x

    Article  Google Scholar 

  • Mukherjee S, Aadhar S, Stone D, Mishra V (2018) Increase in extreme precipitation events under anthropogenic warming in India. Weather Clim Extremes 20:45–53

    Article  Google Scholar 

  • Nikolopoulos EI, Anagnostou EN, Borga M (2013) Using high-resolution satellite rainfall products to simulate a major flash flood event in Northern Italy. https://doi.org/10.1175/JHM-D-12-09.1

  • Ozdemir H, Sampson CC, de Almeida GAM, Bates PD (2013) Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data. Hydrol Earth Syst Sci 17:4015–4030

    Article  Google Scholar 

  • Petersen MS (2001) Impacts of flash floods In: Gruntfest E, Handmer J (eds) Coping with flash floods. NATO Science Series (Series 2. Environmental Security), vol 77. Springer, Dordrecht, 55: pp. 67–81, https://doi.org/10.1007/978-94-010-0918-8_2

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Hazard watershed, Iran. Nat Hazard 63:965–996

    Article  Google Scholar 

  • Prama M, Omran A, Schröder D, Abouelmagd A (2020) Vulnerability assessment of flash floods in Wadi Dahab Basin, Egypt. Environ Earth Sci 79:114. https://doi.org/10.1007/s12665-020-8860-5

    Article  Google Scholar 

  • Pregnolato M, Sean AF, Wilkinson M, Dawson RJ (2017) The impact of flooding on road transport: a depth-disruption function. Transp Res Part D Transp Environ. https://doi.org/10.1016/j.trd.2017.06.020

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting, and resources allocation. McGraw-Hill, New York

    Google Scholar 

  • Saharia M, Kirstetter PE, Vergara H, Gourley JJ, Hong Y, Giroud M (2017) Mapping flash flood severity in the United States. J Hydrometeorol. https://doi.org/10.1175/JHM-D-16-0082.1

    Article  Google Scholar 

  • Sangati M, Borga M, Rabuffetti D, Bechini R (2009) Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modelling: an evaluation based on the Sesia river basin, North Western Italy. Adv Water Resour 32(7):1090–1106. https://doi.org/10.1016/j.advwatres.2008.12.007

    Article  Google Scholar 

  • Sayed YA, El-Desoky MA, Gameh MA, Faragallah MA (2016) Land capability of some soils representing western limestone Plateau at Assiut. Assiut J Agric Sci 47(3):120–141

    Google Scholar 

  • Shanableh A, Al-Ruzouq R, Yilmaz AG, Siddique M, Merabtene TD, Imteaz MA (2018) Effects of Land Cover Change on Urban Floods and

  • Shanableh A, Al-Ruzouq R, Yilmaz AG, Siddique M, Merabtene T, Imteaz MA (2018) Effects of land cover change on urban floods and rainwater harvesting: a case study in Sharjah, UAE. Water 10:631. https://doi.org/10.3390/w10050631

    Article  Google Scholar 

  • Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topology. Geol Soc Am Bull 63(11):1117–1142

    Article  Google Scholar 

  • Taofik OK, Innocent B, Christopher N, Jidauna GG, James AS (2017) A comparative analysis of drainage morphometry on hydrologic characteristics of Kereke and Ukoghor basins on flood vulnerability in Makurdi Town, Nigeria. Hydrology 5(3):32–40. https://doi.org/10.11648/j.hyd.20170503.11

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Veijalainen N, Jakkila J, Olsson T, Backman L, Vehviläinen B, Kaurola J (2017) Impacts of climate change on extreme floods in Finland—studies using bias corrected Regional Climate Model data. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-2017-602

  • Warner TT (2004) Desert meteorology. Cambridge University Press, Edinburgh, p 612

    Book  Google Scholar 

  • Vanderkimpen P, Rocabado I, Cools J, El-Sammany M, Abdelkhalek A (2010) Flaflom—an early warning system for flash floods in Egypt. WIT Trans Ecol Environ 133:193–202. https://doi.org/10.2495/FRIAR100171

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soha A. Mohamed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, S.A. Development of a GIS-based alert system to mitigate flash flood impacts in Asyut governorate, Egypt. Nat Hazards 108, 2739–2763 (2021). https://doi.org/10.1007/s11069-021-04799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04799-2

Keywords

Navigation