Skip to main content

Selecting and correcting RCM models ensemble: a case study for the evaluation of thermal discomfort for the city of Prato

Abstract

In this work we propose an approach for selecting a subset of regional climate models that have a reasonable skill in simulating the past climate and represent changes in average and extreme climatic conditions well. After that, it is carried out a post-processing of the selected models based on quantile mapping correction. The selection of a subset of climate models is a crucial step when conducting climate change impact studies. Performaces of the proposed approach have been evaluated considering as a case study the evaluation of thermal discomfort for the city of Prato located in Italy. The climatic parameter adopted for the evaluation of the thermal discomfort due to high temperatures is the humidex index. For this specific test case, the approach defined and used to select an appropriate subset of EURO-CORDEX climate models to evaluate changes in the trend of humidex index and the related uncertainty, proved to be valid .

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Biemans H, Speelman LH, Ludwig F, Moors EJ, Wiltshire AJ, Kumar P, Gerten D, Kabat P (2013) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci U S A 106(21):84418446. https://doi.org/10.1073/pnas.0900094106

    Article  Google Scholar 

  • Boeand J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27(12):16431655

    Google Scholar 

  • Caldwell P, Bretherton C, Zelinka M, Klein S, Santer B, Sanderson B (2014) Statistical significance of climate sensitivity predictors obtained by data mining. Geophys Res Lett 41:18031808. https://doi.org/10.1002/2014GL059205

    Article  Google Scholar 

  • Cannon AJ (2014) Selecting GCM scenarios that span the range of changes in a multimodel ensemble: application to CMIP5 climate extremes indices. J Clim 28:12601267. https://doi.org/10.1175/JCLI-D-14-00636.1

    Article  Google Scholar 

  • Cannon AJ (2015) Selecting GCM scenarios that span the range of changes in a multimodel ensemble: application to CMIP5 climate extremes indices. J Clim 28:12601267. https://doi.org/10.1175/JCLI-D-14-00636.1

    Article  Google Scholar 

  • Collins M, Brierley CM, MacVean M, Booth BBB, Harris GR (2007) The sensitivity of the rate of transient climate change to ocean physics perturbations. J Clim 20:23315–2320

    Article  Google Scholar 

  • Coppola E, Sobolowski S, Pichelli E et al (2020) (2018) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim Dyn 55:334. https://doi.org/10.1007/s00382-018-4521-8

    Article  Google Scholar 

  • Dosio A (2018) PESETA III Task1: Climate change projections, bias-adjustment, and selection of model runs, Joint Research Centre (JRC) Technical Report, JRC113745, EUR 29444 EN, ISBN 978-92-79-97261-4, ISSN 1831-9424, https://doi.org/10.2760/44883.

  • Evans P, Ji F, Abramowitz G, Ekstrm M (2013) Optimally choosing small ensemble members to produce robust climate simulations. Environ Res Lett 8:044050. https://doi.org/10.1088/1748-9326/8/4/044050

    Article  Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the reliability ensemble aver- aging (REA) method. J Clim 15(10):11411158

    Article  Google Scholar 

  • Gudmundsson L, Bremnes JB, Haugen JE, Engen Skaugen T (2012) Technical note: downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods. Hydrol Earth Syst Sci 9:6185–6201

    Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(1095):1107.

    Google Scholar 

  • Hennemuth TI, Jacob D, Keup-Thiel E, Kotlarski S, Nikulin G, Otto et al J (2017) Guidance for EUROCORDEX climate projections data use. Version1.0 - 2017.08. Link: https ://euro-corde x.net/imperia/md/conte nt/csc/corde x/euro-corde x-guide lines -versi on1.0-2017.08.pdf

  • Hingray B, Sad M (2014) Partitioning internal variability and model uncertainty components in a multimember multimodel ensemble of climate projections. J Clim 27(6779):6798. https://doi.org/10.1175/jcli-d-13-00629.1

    Article  Google Scholar 

  • Houle D, Bouffard A, Duchesne L, Logan T, Harvey R (2012) Projections of future soil temperature and water content for three Southern Quebec forested sites. J Clim 25(21):76907701. https://doi.org/10.1175/JCLI-D-11-00440.1

    Article  Google Scholar 

  • Immerzeel WW, Pellicciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat Geosci 6(8):14. https://doi.org/10.1038/ngeo1896

    Article  Google Scholar 

  • IPCC (2012) Summary for Policymakers. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working Groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, pp 3–21

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge

  • IPCC (2014a) Climate change 2014: mitigation of climate change. contribution of working Group III to the fifth assessment report of the intergovernmental panel on climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlmer S, von Stechow C, Zwickel T , Minx JC (eds). Cambridge University Press, Cambridge

  • Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563578. https://doi.org/10.1007/s10113-013-0499-2

    Article  Google Scholar 

  • Knutti R (2008) Should we believe model predictions of future climate change? Philos Trans R Soc Lond A 366(4647):4664. https://doi.org/10.1098/rsta.2008.0169

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl G (2010) Challenges in combining projections from multiple climate models. J Clim 23:27392758. https://doi.org/10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Knutti R, Sedlek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369373. https://doi.org/10.1038/nclimate1716

    Article  Google Scholar 

  • Kotlarski S, Keuler K, Christensen OB et al (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:12971333. https://doi.org/10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  • Lutz AF, ter Maat HW, Biemans H, Shrestha AB, Westerd F, Immerzeel WW (2016) Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int J Climatol 36:39884005. https://doi.org/10.1002/joc.4608

    Article  Google Scholar 

  • Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26:21372143. https://doi.org/10.1175/JCLI-D-12-00821.1

    Article  Google Scholar 

  • Martinez Gerardo Sanchez, Baccini Michela, De Ridder Koen, Hooyberghs Hans, Lefebvre Wouter, Kendrovski Vladimir, Scott Kristen, Spasenovska Margarita (2016) Projected heat-related mortality under climate change in the metropolitan area of Skopje. BMC Public Health 16:407. https://doi.org/10.1186/s12889-016-3077-y

    Article  Google Scholar 

  • Maslin M, Austin P (2012) Climate models at their limit? Nature 486(183):184. https://doi.org/10.1038/486183a

    Article  Google Scholar 

  • Masson D, Knutti R (2011) Climate model genealogy. Geophys Res Lett 38:L08703. https://doi.org/10.1029/2011GL046864

    Article  Google Scholar 

  • Masterson J, Richardson FA (1979) Humidex, a method of quantifying human discomfort due to excessive heat and humidity. Environment Canada, Downs view, Ontario

    Google Scholar 

  • Meinshausen M et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213241. https://doi.org/10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747756. https://doi.org/10.1038/nature08823

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430(768):772. https://doi.org/10.1038/nature02771

    Article  Google Scholar 

  • Parker W (2013) Ensemble modelling, uncertainty and robust predictions. Wiley Interdiscip Rev Clim Change 4:213223. https://doi.org/10.1002/wcc.220

    Article  Google Scholar 

  • Piani C, Weedon GP, Best M, Gomes SM, Viterbo P, Hagemann S, Haerter JO (2010) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395(3–4):199–215

    Article  Google Scholar 

  • Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci USA. 106(21):84418446. https://doi.org/10.1073/pnas.0900094106

    Article  Google Scholar 

  • Pirtle Z, Meyer R, Hamilton A (2010) What does it mean when climate models agree? Environ Sci Policy 13:351361. https://doi.org/10.1016/j.envsci.2010.04.004

    Article  Google Scholar 

  • Sanderson B, Knutti R, Caldwell P (2015a) A representative democracy to reduce interdependency in a multimodel ensemble. J Clim 28:51715194. https://doi.org/10.1175/JCLI-D-14-00362.1

    Article  Google Scholar 

  • Sorg A, Huss M, Rohrer M, Stoffel M (2014) The days of plenty might soon be over in glacierized Central Asian catchments, Environ Res Lett 9(10), https://doi.org/10.1088/1748-9326/9/10/104018.

  • Tebaldi C, Arblaster J, Knutti R (2011) Mapping model agreement on future climate projections. Geophys Res Lett 38:L23701. https://doi.org/10.1029/2011GL049863

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate change impact studies: Review and evaluation of different methods. J Hydrol 456–457:12–29

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2010) Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies. Geograp Compass 4(7):834860. https://doi.org/10.1111/j.1749-8198.2010.00357.x

    Article  Google Scholar 

  • Villani V, Rianna G, Mercogliano P, Zollo AL (2015) Statistical approaches versus weather generator to downscale RCM outputs to slope scale for stability assessment: a comparison of performances. Elect J Geotech Eng 20(4):1495–1515

    Google Scholar 

  • Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J (2014) The inter-sectoral impact model intercomparison project (ISI-MIP): project framework. Proc Natl Acad Sci USA 111(9):32283232. https://doi.org/10.1073/pnas.1312330110

    Article  Google Scholar 

  • Willows RI , Connell RK (2003) Climate Adaptation: Risk, Uncertainty and Decision-Making, (UK Climate Impacts Programme, Oxford) UKCIP Technical Report

  • Winkler J et al (2011) Climate scenario development and applications for local/regional climate change impact assessments an overview for the nonclimate scientist. Geograp Compass 5(6):275–300

    Article  Google Scholar 

  • WMO (2007) The Role of Climatological Normals in a Changing Climate, WCDMP-No. 61, WMO.TD No. 1377

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Villani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villani, V., Romano, E., Barbato, G. et al. Selecting and correcting RCM models ensemble: a case study for the evaluation of thermal discomfort for the city of Prato. Nat Hazards 107, 1541–1557 (2021). https://doi.org/10.1007/s11069-021-04645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04645-5

Keywords

  • Climate changes
  • Impact studies
  • Thermal discomfort
  • High-resolution climate projections
  • Multi-model ensemble
  • Multi-criteria approach
  • Bias correction