Skip to main content

A height-resolving tropical cyclone boundary layer model with vertical advection process

Abstract

The height-resolving model is thought to be an optimal scheme for modeling the tropical cyclone (TC) wind fields in the boundary layer because it explicitly depicts the wind structures in that layer as TC evolves over time. However, the vertical advection process which exists in TCs has not been well considered in previously proposed parametric TC models. Neglecting this process may cause deviations of the simulated wind field structure in the boundary layer. Herein, a height-resolving boundary layer wind field model incorporating both the vertical advection and vertical diffusion processes is proposed and a semi-analytical solution to the governing equations is developed. The adequacy of this model is evaluated by comparing with the Weather Research and Forecasting model simulations, the Hurricane Research Division’s H*Wind snapshots, GPS dropsonde datasets and ground measurements of several TC events. Results show that the proposed model with vertical advection can reasonably produce the wind fields of TCs, and its advantage lies in the production of a more realistic three-dimensional wind structure in the boundary layer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • BattsASCE MEAM, Russell LR, Simiu E (1980) Hurricane wind speeds in the United States. J Struct Div 106:2001–2016

    Article  Google Scholar 

  • Bell MM, Montgomery MT (2008) Observed structure, evolution, and potential intensity of category 5 hurricane Isabel (2003) from 12 to 14 September. Mon Weather Rev 136:2023–2046

    Article  Google Scholar 

  • Chen Y, Duan Z (2018) A statistical dynamics track model of tropical cyclones for assessing typhoon wind hazard in the coast of southeast China. J Wind Eng Ind Aerodyn 172:325–340

    Article  Google Scholar 

  • Chow SH (1971) A study of the wind field in the planetary boundary layer of a moving tropical cyclone. New York University, New York

    Google Scholar 

  • Dodla VB, Desamsetti S, Yerramilli A (2011) A comparison of HWRF, ARW and NMM models in Hurricane Katrina (2005) simulation. Int J Environ Res Public Health 8:2447–2469

    Article  Google Scholar 

  • Fang G, Zhao L, Cao S, Ge Y, Pang W (2018) A novel analytical model for wind field simulation under typhoon boundary layer considering multi-field correlation and height-dependency. J Wind Eng Ind Aerodyn 175:77–89

    Article  Google Scholar 

  • Franklin JL, Black ML, Valde K (2003) GPS Dropwindsonde wind profiles in hurricanes and their operational implications. Weather Forecast 18:32–44

    Article  Google Scholar 

  • Giammanco IM, Schroeder JL, Powell MD (2013) GPS Dropwindsonde and WSR-88D observations of tropical cyclone vertical wind profiles and their characteristics. Weather Forecast 28:77–99

    Article  Google Scholar 

  • Holland GJ (1980) An analytic model of the wind and pressure profiles in hurricanes. Mon Weather Rev 108:1212–1218

    Article  Google Scholar 

  • Holton JR (2007) An introduction to dynamic meteorology, vol 88. Elsevier Academic Press, Boston

    Google Scholar 

  • Hong HP, Li SH, Duan ZD (2016) Typhoon wind hazard estimation and mapping for coastal region in Mainland China. Natural Hazards Rev 17:1–13

    Article  Google Scholar 

  • Hong X, Hong HP, Li J (2019) Solution and validation of a three dimensional tropical cyclone boundary layer wind field model. J Wind Eng Ind Aerodyn 193:103973

    Article  Google Scholar 

  • Kepert J (2001) The dynamics of boundary layer jets within the tropical cyclone core. Part i: linear theory. J Atmosph Sci 58:2469–2484

    Article  Google Scholar 

  • Kepert J, Wang Y (2001) The dynamics of boundary layer jets within the tropical cyclone core. Part II: nonlinear enhancement. J Atmosph Sci 58:2485–2501

    Article  Google Scholar 

  • Kepert JD (2010a) Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: comparing the simulations. Quarterly J Royal Meteorol Soc 136:1686–1699

    Article  Google Scholar 

  • Kepert JD (2010b) Slab- and height-resolving models of the tropical cyclone boundary layer. Part II: Why the simulations differ. Quarterly J Royal Meteorol Soc 136:1700–1711

    Article  Google Scholar 

  • Kepert JD (2012) Choosing a boundary layer parameterization for tropical cyclone modeling. Mon Weather Rev 140:1427–1445

    Article  Google Scholar 

  • Landsea CW, Franklin JL (2013) Atlantic Hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141:3576–3592

    Article  Google Scholar 

  • Langousis A, Veneziano D (2009) Theoretical model of rainfall in tropical cyclones for the assessment of long-term risk. J Geophys Res 114:D02106

    Google Scholar 

  • Langousis A, Veneziano D, Chen S (2009) Boundary layer model for moving tropical cyclones. In: Elsner JB, Jagger TH (eds) Hurricanes and climate change. Springer, Boston, pp 265–286

    Chapter  Google Scholar 

  • Li J, Gang W, Lin W, He Q, Feng Y, Mao JJAR (2013) Cloud-scale simulation study of Typhoon Hagupit (2008) Part I: Microphysical processes of the inner core and three-dimensional structure of the latent heat budget. Atmos Res 120–121:170–180

    Article  Google Scholar 

  • Li SH, Hong HP (2015) Observations on a hurricane wind hazard model used to map extreme hurricane wind speed. J Struct Eng 141:1–12

    Article  Google Scholar 

  • Li W, Hu Z, Pei Z, Li S, Chan PW (2020) A discussion on influences of turbulent diffusivity and surface drag parameterizations using a linear model of the tropical cyclone boundary layer wind field. Atmos Res 237:104847

    Article  Google Scholar 

  • Lu P, Lin N, Emanuel K, Chavas D, Smith J (2018) Assessing hurricane rainfall mechanisms using a physics-based model: hurricanes Isabel (2003) and Irene (2011). J Atmosph Sci 75:2337–2358

    Article  Google Scholar 

  • Meng Y, Masahiro M, Kazuki H (1995) An analytical model for simulation of the wind field in a typhoon boundary layer. J Wind Eng Ind Aerodyn 56:291–310

    Article  Google Scholar 

  • Ming Y et al (2014) An overview of the china meteorological administration tropical cyclone database. J Atmosph Oceanic Technol 31:287–301

    Article  Google Scholar 

  • Powell M et al (2005) State of Florida hurricane loss projection model: atmospheric science component. J Wind Eng Ind Aerodyn 93:651–674

    Article  Google Scholar 

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Article  Google Scholar 

  • Schwendike J, Kepert JD (2008) The Boundary layer winds in hurricanes Danielle (1998) and Isabel (2003). Mon Weather Rev 136:3168–3192

    Article  Google Scholar 

  • Shapiro LJ (1983) The asymmetric boundary layer flow under a translating Hurricane. J Atmosph Sci 40:1984–1998

    Article  Google Scholar 

  • Snaiki R, Wu T (2017a) A linear height-resolving wind field model for tropical cyclone boundary layer. J Wind Eng Ind Aerodyn 171:248–260

    Article  Google Scholar 

  • Snaiki R, Wu T (2017b) Modeling tropical cyclone boundary layer: height-resolving pressure and wind fields. J Wind Eng Ind Aerodyn 170:18–27

    Article  Google Scholar 

  • Sparks PR, Huang Z (2001) Gust factors and surface-to-gradient wind-speed ratios in tropical cyclones. J Wind Eng Ind Aerodyn 89:1047–1058

    Article  Google Scholar 

  • Thompson EF, Cardone VJ (1996) Practical modeling of hurricane surface wind fields. J Waterway Port Coastal Ocean Eng 122:195–205

    Article  Google Scholar 

  • Vickery PJ, Masters FJ, Powell MD, Wadhera D (2009a) Hurricane hazard modeling: the past, present, and future. J Wind Eng Ind Aerodyn 97:392–405

    Article  Google Scholar 

  • Vickery PJ, Wadhera D (2008) Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and h*wind data. J Appl Meteorol Climatol 47:2497–2517

    Article  Google Scholar 

  • Vickery PJ, Wadhera D, Powell MD, Chen Y (2009b) A Hurricane boundary layer and wind field model for use in engineering applications. J Appl Meteorol Climatol 48:381–405

    Article  Google Scholar 

  • Vickery PJ, Wadhera D, Twisdale LA, Lavelle FM (2009c) U.S. Hurricane wind speed risk and uncertainty. J Struct Eng 135:301–320

    Article  Google Scholar 

  • Vogl S, Smith RK (2009) Limitations of a linear model for the hurricane boundary layer. Quarterly J Royal Meteorol Soc 135:839–850

    Article  Google Scholar 

  • Xiao YF, Duan ZD, Xiao YQ, Ou JP, Chang L, Li QS (2011) Typhoon wind hazard analysis for southeast China coastal regions. Struct Saf 33:286–295

    Article  Google Scholar 

  • Xue L, Li Y, Song L, Chen W, Wang B (2017) A WRF-based engineering wind field model for tropical cyclones and its applications. Nat Hazards 87:1735–1750

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key R&D Program of China (Grant Number 2018YFC0809403) and the Natural Science Foundation of China (Grant Numbers 51978223, U17092079) is gratefully acknowledged.

Funding

The National Key R&D Program of China (Grant Numbers 2018YFC0809403).The Natural Science Foundation of China (Grant Numbers 51978223). The Natural Science Foundation of China (Grant Numbers U17092079)

Author information

Authors and Affiliations

Authors

Contributions

JY, HZ and ZD contributed to conceptualization; JY, YC and HZ were involved in methodology; JY and YC contributed to formal analysis and investigation; JY, YC and ZD were involved in writing—original draft preparation and writing—review and editing; ZD contributed to funding acquisition, resources and supervision.

Corresponding author

Correspondence to Zhongdong Duan.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher′s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In the cylindrical coordinate system, Eq. (3) can be expressed as

$$\begin{gathered} (u_{c} + u^{\prime})\frac{{\partial u^{\prime}}}{\partial r} + \frac{{v_{c} + v^{\prime}}}{r}\frac{{\partial u^{\prime}}}{\partial \lambda } + \frac{{v_{g} }}{r}\frac{{\partial u^{\prime}}}{\partial \lambda } + w^{\prime}\frac{{\partial u^{\prime}}}{\partial z} - \frac{{v_{c} v^{\prime} + v^{{\prime}{2}} + 2v^{\prime}v_{g} }}{r} = f \cdot v^{\prime} + \hfill \\ K_{v} \left[ {\frac{1}{r}\frac{\partial }{\partial r}\left( {r\frac{{\partial u^{\prime}}}{\partial r}} \right) + \frac{1}{{r^{2} }}\frac{{\partial^{2} u^{\prime}}}{{\partial \lambda^{2} }} + \frac{{\partial^{2} u^{\prime}}}{{\partial z^{2} }} - \frac{1}{{r^{2} }}\left( {u^{\prime} + 2\frac{{\partial (v_{g} + v^{\prime})}}{\partial \lambda }} \right)} \right] \hfill \\ \end{gathered}$$
(33)
$$\begin{gathered} (u_{c} + u^{\prime})\frac{{\partial v^{\prime}}}{\partial r} + \frac{{v_{c} + v^{\prime}}}{r}\frac{{\partial v^{\prime}}}{\partial \lambda } + \frac{{v_{g} }}{r}\frac{{\partial v^{\prime}}}{\partial \lambda } + w^{\prime}\frac{{\partial v^{\prime}}}{\partial z} + \frac{{u_{c} v^{\prime} + u^{\prime}v^{\prime} + u^{\prime}u_{g} }}{r} + u^{\prime}\frac{{\partial v_{g} }}{\partial r} = - f \cdot u^{\prime} + \hfill \\ K_{v} \left[ {\frac{1}{r}\frac{\partial }{\partial r}\left( {r\frac{{\partial (v_{g} + v^{\prime})}}{\partial r}} \right) + \frac{1}{{r^{2} }}\frac{{\partial^{2} (v_{g} + v^{\prime})}}{{\partial \lambda^{2} }} + \frac{{\partial^{2} (v_{g} + v^{\prime})}}{{\partial z^{2} }} - \frac{1}{{r^{2} }}\left( {(v_{g} + v^{\prime}) - 2\frac{{\partial u^{\prime}}}{\partial \lambda }} \right)} \right] \hfill \\ \end{gathered}$$
(34)

in which, u′, v′ and w′ are the radial, tangential and vertical friction caused wind components, respectively; r, λ and z are the radial, azimuthal and vertical variables, respectively; uc and vc are the radial and tangential components of Vc. It should be noted that the radial component of the gradient wind (ug) is assumed to be zero. Scale analysis is used here to simplify Eqs. (33) and (34), and the variable magnitudes of a tropical cyclone are listed in Table

Table 3 Scales, magnitudes and units of variables in Eqs. (34) and (35)

3.

The scaling terms and magnitudes of Eqs. (33) and (34) are listed in Tables

Table 4 Scaling of the terms in Eq. (33)

4 and

Table 5 Scaling of the terms in Eq. (34)

5. For simplicity, we only consider the terms whose magnitudes larger than 10–4. The Coriolis terms and vertical diffusion terms are retained for their importance in TC wind field simulations. Then, we have

$$\frac{{v_{g} }}{r}\frac{{\partial u^{\prime}}}{\partial \lambda } - \left( {\frac{{2v_{g} }}{r} + f} \right)v^{\prime} + w^{\prime}\frac{{\partial u^{\prime}}}{\partial z} = K_{v} \frac{{\partial^{2} u^{\prime}}}{{\partial z^{2} }}$$
(35)
$$\frac{{v_{g} }}{r}\frac{{\partial v^{\prime}}}{\partial \lambda }{ + }\left( {\frac{{\partial v_{g} }}{\partial r} + \frac{{v_{g} }}{r} + f} \right)u^{\prime} + w^{\prime}\frac{{\partial v^{\prime}}}{\partial z} = K_{v} \frac{{\partial^{2} v^{\prime}}}{{\partial z^{2} }}$$
(36)

Appendix 2

Here, we assume the friction wind components u′ and v′ to be zero as z →  + ∞. The pk in Eq. (26) can be solved as

$$p_{k} = \delta - \sqrt {2i\sqrt {\alpha \beta } + 2ik\gamma + \delta^{2} }$$
(37)

Let

$$t_{k} = \sqrt {2i\sqrt {\alpha \beta } + 2ik\gamma + \delta^{2} } = a + bi$$
(38)

where a = Re(tk), b = Im(tk). For \(\sqrt {\alpha \beta } + k\gamma \ge 0\), \(p_{k} = \delta - \left[ {\left| a \right| + \left| b \right|i} \right]\); for \(\sqrt {\alpha \beta } + k\gamma < 0\), \(p^{\prime}_{k} = \delta - \left[ {\left| a \right| - \left| b \right|i} \right]\).

After some manipulations of terms in Eqs. (27) and (28), for \(\sqrt {\alpha \beta } + k\gamma \ge 0\) and \(\left| k \right| \le 1\), we have the following equations.

For k = 0,

$$- \sqrt {\frac{\alpha }{\beta }} A_{0} p_{0} - \sqrt {\frac{\alpha }{\beta }} A_{0}^{*} p_{0}^{*} + \sqrt {\frac{\alpha }{\beta }} \frac{{A_{0} C_{d} v_{g} }}{{K_{v} }} + \sqrt {\frac{\alpha }{\beta }} \frac{{A_{0}^{*} C_{d} v_{g} }}{{K_{v} }} = 0$$
(39)
$$A_{0} p_{0} - A_{0}^{*} p_{0}^{*} - \frac{{2A_{0} C_{d} v_{g} }}{{K_{v} }} + \frac{{2A_{0}^{*} C_{d} v_{g} }}{{K_{v} }} - \frac{{2iC_{d} v_{g}^{2} }}{{K_{v} }} = 0$$
(40)

For k = 1,

$$- \sqrt {\frac{\alpha }{\beta }} A_{1} p_{1} - \sqrt {\frac{\alpha }{\beta }} A_{ - 1}^{*} p_{ - 1}^{*} + \sqrt {\frac{\alpha }{\beta }} \frac{{A_{1} C_{d} v_{g} }}{{K_{v} }} + \sqrt {\frac{\alpha }{\beta }} \frac{{A_{ - 1}^{*} C_{d} v_{g} }}{{K_{v} }} + \frac{{{\mathbf{V}}_{c} C_{d} v_{g} }}{{K_{v} }} = 0$$
(41)
$$A_{1} p_{1} - A_{ - 1}^{*} p_{ - 1}^{*} - \frac{{2A_{1} C_{d} v_{g} }}{{K_{v} }} + \frac{{2A_{ - 1}^{*} C_{d} v_{g} }}{{K_{v} }} + \frac{{2V_{c} C_{d} v_{g} }}{{K_{v} }} = 0$$
(42)

For k = −1,

$$- \sqrt {\frac{\alpha }{\beta }} A_{ - 1} p_{ - 1} - \sqrt {\frac{\alpha }{\beta }} A_{1}^{*} p_{1}^{*} + \sqrt {\frac{\alpha }{\beta }} \frac{{A_{ - 1} C_{d} v_{g} }}{{K_{v} }} + \sqrt {\frac{\alpha }{\beta }} \frac{{A_{1}^{*} C_{d} v_{g} }}{{K_{v} }} + \frac{{{\mathbf{V}}_{c} C_{d} v_{g} }}{{K_{v} }} = 0$$
(43)
$$A_{ - 1} p_{ - 1} - A_{1}^{*} p_{1}^{*} - \frac{{2A_{ - 1} C_{d} v_{g} }}{{K_{v} }} + \frac{{2A_{1}^{*} C_{d} v_{g} }}{{K_{v} }} - \frac{{2V_{c} C_{d} v_{g} }}{{K_{v} }} = 0$$
(44)

In the above equations, \(*\) indicates a complex conjugate. A0, A1 and A-1 can be derived from Eqs. (39) and (40), (41) and (42), (43) and (44), respectively, and we have

$$A_{0} = - \frac{{2iC_{d} v_{g}^{2} ( - K_{v} p_{0}^{*} + C_{d} v_{g} )}}{{2K_{v}^{2} p_{0} p_{0}^{*} - 3K_{v} C_{d} p_{0} v_{g} - 3K_{v} C_{d} p_{0}^{*} v_{g} + 4C_{d}^{2} v_{g}^{2} }}$$
(45)
$$A_{1} = \frac{{{\mathbf{V}}_{c} C_{d} v_{g} \left( {K_{v} p_{ - 1}^{*} - 2K_{v} \sqrt {\frac{\alpha }{\beta }} p_{ - 1}^{*} - 2C_{d} v_{g} + 2\sqrt {\frac{\alpha }{\beta }} C_{d} v_{g} } \right)}}{{\sqrt {\frac{\alpha }{\beta }} \left( {2K_{v}^{2} p_{1} p_{ - 1}^{*} - 3K_{v} C_{d} p_{1} v_{g} - 3K_{v} C_{d} p_{ - 1}^{*} v_{g} + 4C_{d}^{2} v_{g}^{2} } \right)}}$$
(46)
$$A_{ - 1} = \frac{{{\mathbf{V}}_{c} C_{d} v_{g} \left( {K_{v} p_{1}^{*} + 2K_{v} \sqrt {\frac{\alpha }{\beta }} p_{1}^{*} - 2C_{d} v_{g} - 2\sqrt {\frac{\alpha }{\beta }} C_{d} v_{g} } \right)}}{{\sqrt {\frac{\alpha }{\beta }} \left( {2K_{v}^{2} p_{ - 1} p_{1}^{*} - 3K_{v} C_{d} p_{ - 1} v_{g} - 3K_{v} C_{d} p_{1}^{*} v_{g} + 4C_{d}^{2} v_{g}^{2} } \right)}}$$
(47)

For \(\sqrt {\alpha \beta } + k\gamma < 0\), one can easily have

$$A^{\prime}_{1} = \frac{{V_{c} C_{d} v_{g} \left( {K_{v} p_{ - 1}^{*\prime } - 2K_{v} \sqrt {\frac{\alpha }{\beta }} p_{ - 1}^{*\prime } - 2C_{d} v_{g} + 2\sqrt {\frac{\alpha }{\beta }} C_{d} v_{g} } \right)}}{{\sqrt {\frac{\alpha }{\beta }} \left( {2K_{v}^{2} p_{1} p_{ - 1}^{*\prime } - 3K_{v} C_{d} p_{1} v_{g} - 3K_{v} C_{d} p_{ - 1}^{*\prime } v_{g} + 4C_{d}^{2} v_{g}^{2} } \right)}}$$
(48)
$$A_{ - 1}^{\prime } = \frac{{{\mathbf{V}}_{c} C_{d} v_{g} \left( {K_{v} p_{1}^{*} + 2K_{v} \sqrt {\frac{\alpha }{\beta }} p_{1}^{*} - 2C_{d} v_{g} - 2\sqrt {\frac{\alpha }{\beta }} C_{d} v_{g} } \right)}}{{\sqrt {\frac{\alpha }{\beta }} \left( {2K_{v}^{2} p_{ - 1}^{\prime } p_{1}^{*} - 3K_{v} C_{d} p_{ - 1}^{\prime } v_{g} - 3K_{v} C_{d} p_{1}^{*} v_{g} + 4C_{d}^{2} v_{g}^{2} } \right)}}$$
(49)

Finally, the friction caused wind components (, ) in the TC boundary layer are,

for \(\sqrt {\alpha \beta } + k\gamma \ge 0\),

$$u^{\prime}{\kern 1pt} {\kern 1pt} (r,\lambda ,z) = \sqrt {\frac{\alpha }{\beta }} \cdot {\text{Re}} \left[ {A_{ - 1} \exp (p_{ - 1} \cdot z - i\lambda ) + A_{0} \exp (p_{0} \cdot z) + A_{1} \exp (p_{1} \cdot z + i\lambda )} \right]$$
(50)
$$v^{\prime}{\kern 1pt} {\kern 1pt} (r,\lambda ,z) = {\text{Im}} \left[ {A_{ - 1} \exp (p_{ - 1} \cdot z - i\lambda ) + A_{0} \exp (p_{0} \cdot z) + A_{1} \exp (p_{1} \cdot z + i\lambda )} \right]$$
(51)

for \(\sqrt {\alpha \beta } + k\gamma < 0\),

$$u^{\prime}{\kern 1pt} {\kern 1pt} (r,\lambda ,z) = \sqrt {\frac{\alpha }{\beta }} \cdot {\text{Re}} \left[ {A^{\prime}_{ - 1} \exp (p^{\prime}_{ - 1} \cdot z - i\lambda ) + A^{\prime}_{0} \exp (p^{\prime}_{0} \cdot z) + A^{\prime}_{1} \exp (p^{\prime}_{1} \cdot z + i\lambda )} \right]$$
(52)
$$v^{\prime}{\kern 1pt} {\kern 1pt} (r,\lambda ,z) = {\text{Im}} \left[ {A^{\prime}_{ - 1} \exp (p^{\prime}_{ - 1} \cdot z - i\lambda ) + A^{\prime}_{0} \exp (p^{\prime}_{0} \cdot z) + A^{\prime}_{1} \exp (p^{\prime}_{1} \cdot z + i\lambda )} \right]$$
(53)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Chen, Y., Zhou, H. et al. A height-resolving tropical cyclone boundary layer model with vertical advection process. Nat Hazards 107, 723–749 (2021). https://doi.org/10.1007/s11069-021-04603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04603-1

Keywords

  • Tropical cyclone
  • Height-resolving
  • Boundary layer
  • Vertical advection
  • Wind field