Skip to main content

Advertisement

Log in

Landslides in the urban and suburban perimeter of Chefchaouen (Rif, Northern Morocco): inventory and case study

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Many old and recent landslides affect the Rif region in Northern Morocco. In Chefchaouen city, this natural hazard constitutes a major obstacle for the development of the city and its suburban districts. In this study, a landslide inventory was realized to identify and characterize slope instability cases in the Chefchaouen city, their relationship to the subsoil layers and their effect on the stability of newly built districts. Special attention was given to a recent landslide in the Ain Haouzi district, reactivated in 2016 and causing damage to 35 houses. This slide was subject to further scientific investigations (borehole inclinometer and ERT) in order to better our understanding of the slopes instability in the study area. The results show that the territory of Chefchaouen city which covers an area 23.63 km2 is affected by 447 landslides most of which (300) are very old and inactive. However, many of the old landslide masses and/or scarps were partially reactivated in the last decade, which caused a lot of material damage to many constructions, estimated to be 25.74 M MAD (approximately 2.5 M$). The building damage inventory also showed how the distribution of landslides in the newly constructed suburban/semirural districts is clearly correlated with the spatial distribution of severely damaged houses. For geomorphological reasons, these housing developments prefer terrains mainly formed by weathered clay layers and scree deposits, characterized by weak geotechnical characteristics, which compromises the stability of constructions. The clandestine nature of the construction work (absence of a sewage network, random changes to the topography) increases the vulnerability of buildings to the natural slope dynamics. The layers which constitute the body of most old and recent landslides are subject to slow gravitational deformation which can be accelerated in major rain events. This was the case for the 2016 event which was reactivated by seven consecutive rainy days. The ERT profiles executed in this area coupled with borehole inclinometer results demonstrate that the plastic, weathered clay layers facilitated the slide of the scree deposits, which constitute the landslide’s body. Indeed, the development plan of the city must be adapted to the slope dynamics and the subsoil behavior, so as to avoid unnecessary material damage from taking place in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander D (1986) Landslide damage to buildings. Environ Geol Water Sci 8:147–151. https://doi.org/10.1007/BF02509902

    Article  Google Scholar 

  • AAA (2004) Association Assaida Alhorra: Ces femmes pauvres ! qui se battent pour le bienêtre de leurs famille. Etude monographique, p 62. https://www.genreenaction.net/IMG/pdf/CV_CES_FEMMES_PAUVre_entier.pdf. Accessed in 03 Mars 2020.

  • Baggio C, Bernardini A, Colozza R, Corazza L (2009) Compilative manual of the 1-level card for damage detection, emergency response and habitability for ordinary buildings in the post-seismic emergency. In: La vulnerabilità degli edifici: valutazione a scala nazionale della vulnerabilità sismica degli edifici ordinari conference, Rome (in Italian)

  • Borelli L, Ciurleo M, Gullà G (2018) Shallow landslide susceptibility assessment in granitic rocks using GISbased statistical methods: the contribution of the weathering grade map. Landslides 15:1127–1142. https://doi.org/10.1007/s10346-018-0947-7

    Article  Google Scholar 

  • Borgatti L, Corsini A, Barbieri M, Sartini G, Truffelli G, Caputo G, Puglisi C (2006) Large reactivated landslides in weak rock masses: a case study from the Northern Apennines (Italy). Landslides 3:115–124. https://doi.org/10.1007/s10346-005-0033-9

    Article  Google Scholar 

  • Burland JB, Broms BB, de Mello VFB (1977) Behaviour of foundations and structures. SOA Report. In: Proceedings of the 9th international conference on soil mechanics and foundation engineering, Tokyo, vol 2, pp 495–546

  • Calcaterra S, Cesi C, Di Maio C, Gambino P, Merli K, Vallario M, Vassallo R (2012) Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Apennines, Italy. Natural Hazard 61(1):257–266. https://doi.org/10.1007/s11069-010-9633-3

    Article  Google Scholar 

  • Chassagneux D, Stieljes L, Mouroux P, Ménilliet F, Ducreux GH (1996) Cartographie de l’aléa retrait-gonflement des sols (sécheresse/pluie) à l’échelle départementale. Approche méthodologique dans les Alpes de Haute-Provence. Rapport BRGM/RR-39218-FR, p 74.

  • Chiocchio C, Iovine G, Parise M (1997) A proposal for surveying and classifying landslide damage to buildings in urban areas. In: Engineering geology and the environment, pp 553–558

  • Chisty KU (2014) Bangladesh institute of planners landslide in Chittagong City: a perspective on hill cutting. J Bangladesh Inst Plan 7:1–17

    Google Scholar 

  • Claerbout J, Muir, (1973) Robust modeling with erratic data. Geophysics 38(5):826–844. https://doi.org/10.1190/1.1440378

    Article  Google Scholar 

  • Cooper AH (2008) The classification, recording, databasing and use of information about building damage caused by subsidence and landslides. Q J Eng Geol Hydrogeol 41(3):409–424. https://doi.org/10.1144/1470-9236/07-223

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter M-G, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Env 73:209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes, transportation research board, U.S. Natl Acad Sci Spec Rep 247:36–75

    Google Scholar 

  • de Groot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55(12):1613–1624. https://doi.org/10.1190/1.1442813

    Article  Google Scholar 

  • Del Soldato M, Bianchini S, Calcaterra D, De Vita P, Di Martire D, Tomás R, Casagli N (2017) A new approach for landslide-induced damage assessment. Geomat Nat Hazards Risk. https://doi.org/10.1080/19475705.2017.1347896

    Article  Google Scholar 

  • Del Soldato M, Di Martire D, Bianchini S, Tomás R, De Vita P, Ramondini M, Casagli N, Calcaterra D (2019) Assessment of landslide-induced damage to structures: the Agnone landslide case study (southern Italy). Bull Eng Geol Environ 78:2387–2408. https://doi.org/10.1007/s10064-018-1303-9

    Article  Google Scholar 

  • Dellero H, El Kharim Y (2013) Rockfall hazard in an old abandoned aggregate quarry in the City of Tétouan. Morocco Int J Geosci 4(8):1228–1232. https://doi.org/10.4236/ijg.2013.48116

    Article  Google Scholar 

  • Didon J, Durant Delga M, Kornprobst J (1973) Homologies géologiques entre les deux rives du détroit de Gibraltar. Bull Soc Géol Fr (7) XV 2:77–105. https://doi.org/10.2113/gssgfbull.S7-XV.2.77

    Article  Google Scholar 

  • El Gharbaoui A (1981) La terre et l’homme dans la péninsule Tingitane; étude sur l’homme et le milieu naturel dans le Rif occidental. Trav Inst Scient Série Géologie et Géographie Physique 15:439

    Google Scholar 

  • El Kharim Y, Darraz C, Hlila R, El Hajjaji K (2003) (2003) Écroulements et mouvements de versants associés au niveau du col d’Onsar (Rif, Maroc) dans un contexte géologique de décrochement. Rev Fr Géotech No 103:3–11. https://doi.org/10.1051/geotech/2003103003

    Article  Google Scholar 

  • El Kharim Y, El Amrani N, Darraz Ch, El Hajjaji K (2001) Study of the landslide-prone geological formations in the urban area of Tetuan (Morocco). Acta Montana Ser A 18(121):65–73

    Google Scholar 

  • El Kharim Y (2002) Etude des mouvements de versants dans la région de Tétouan (Rif occidental). Inventaire analyse et cartographie. Thèse de doctorat d’Etat. Université Abdelmalek Essaadi, p 201.

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98. https://doi.org/10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Fonseca AF (2014) Large deep-seated landslides in the northern Rif Mountains (Northern Morocco): inventory and analysis. Universidade de Lisbona 170.

  • GSL (1991) Geomorphological Services Limited.: Coastal Landslide Potential Assessment: Isle of Wight Undercliff, Ventnor. Report commissioned by the Department of the Environment.

  • Glade T (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA 51(3–4):297–314. https://doi.org/10.1016/S0341-8162(02)00170-4

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Changc K-T (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112(1–2):42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Harmouzi H, Dekayir A, Rouai M, Afechkar M (2018) Analyse géomorphologique et géologique du glissement de terrain d’Akchour (Rif, Maroc). GEO-ECO-TROP 42(1):19–32

    Google Scholar 

  • HCP (2014) Huat Comissariat au Plan: population census data of Morocco available on https://www.p.ma/downloads/RGPH-2014_t17441.html Accessed 10 Mars 2020.

  • Herrera G, Fernández-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2006) A landslide forecasting model using ground based SAR data: the Portalet case study. Eng Geol 105:220–230. https://doi.org/10.1016/j.enggeo.2009.02.009

    Article  Google Scholar 

  • Iovine G, Parise M (2002) Schema illustrato per la classificazione ed il rilievo dei danni da frana in aree urbane [Illustrative scheme to the survey and the classification of landslide damage in urbanized areas]. Memorie Società Geologica Italiana 57:595–603

    Google Scholar 

  • INDH-Chefchaouen (2013) Appui et accompagnement à l’élaboration et la mise en œuvre des Initiatives Locales de Développement Humain (ILDH) dans six communes rurales et un quartier urbain de la province de Chefchaouen, Monographie quartier urbain de Chefchaouen, p 28. http://www.indh-chefchaouen.ma/fr/projets/

  • Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bulletin de la Société Géologique de France 178(2):101–112. https://doi.org/10.2113/gssgfbull.178.2.101

    Article  Google Scholar 

  • LPEE (2017) Laboratoire Publique d’Etudes Et d’Essais: Glissement Ain Haouzi a Chefchaouen: proposition de solution de confortement. Note Technique, p 14

  • Le Tellier J (2006) Les recompositions territoriales dans le Maroc du Nord. Dynamiques urbaines dans la péninsule tingitane et gouvernance des services de base à Tanger et à Tétouan (Maroc). L’inclusion des quartiers pauvres à travers l’accès aux transports et à l’eau potable. Thèse Doctorat, Université Aix-Marseille, p 633

  • Le Tellier J, Debbi F, Amzil L (2009) La mobilité urbaine dans l’agglomération de Tanger: évolutions et perspectives. Etude de cas. Rapport définitif. Plan Bleu Centre d’Activités Régionales. p 132. https://planbleu.org/sites/default/files/publications/mobilite_urbaine_tanger_fr.pdf

  • Lee EM, Moore R (1991) Coastal landslip potential assessment: isle of wight. Report to the Department of the Environment, p 68

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34(3):182–187. https://doi.org/10.1071/EG03182

    Article  Google Scholar 

  • Mansour M (1998) Geodynamic processes and cartography of ground mouvements in the area of Chefchaouen (District of Bouhalla-Amtrass). Application to the stabilization of main road Nb: 39. Western Rif, Morocco. Thèse nouveau doctorat. Université de Paris 07:192

  • Marescot L, Loke MH, Chapellier D, Delaloye R, Lambiel C, Reynard E (2003) Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the Depth Of Investigation index method. Near Surf Geophys 1:57–67. https://doi.org/10.3997/1873-0604.2002007

    Article  Google Scholar 

  • Marschalko M, Yilmaz I, Bednárik M, Kubečka K (2012) Influence of underground mining activities on the slope deformation genesis: Doubrava Vrchovec, Doubrava Ujala and Staric case studies from Czech Republic. Eng Geol 147–148:37–51. https://doi.org/10.1016/j.enggeo.2012.07.014

    Article  Google Scholar 

  • Mastere M (2011) La susceptibilité aux mouvements de terrain dans la province de Chefchaouen: analyse spatiale, modélisation probabiliste multi-échelle et impact sur l’aménagement et l’urbanisme. Thèse de Doctorat, Université de Bretagne Occidentale, p 316

  • Maurer G (1968) Les montagnes du Rif central: Etude géomorphologique. Thèse de doctorat ES Lettres. Université de Paris, p 483

  • McCalpin JP (1984) Preliminary age classification of landslides for inventory mapping. In: Conference: proceedings of the 21st engineering geology and soils engineering symposium, pp 99–111

  • Milliès-Lacroix A (1965) L’instabilité des versants dans le domaine rifain. Revue de Géomorphologie Dynamique 15(7-8–9):97–109

    Google Scholar 

  • Milliès-Lacroix A (1968) Les glissements de terrain, présentation d’une carte prévisionnelle des mouvements de masses dans le Rif (Maroc septentrional). Mines et Géologie 27:45–54

    Google Scholar 

  • Mooney HM, Wetzel WW (1956) The potentials about a point electrode and apparent resistivity curves for a two-, three- and four-layer earth. University of Minnesota Press, Minneapolis, p 158

    Google Scholar 

  • Murthy VNS (2007) Advanced foundation engineering, geotechnical engineering series. CBS Publishers & Distributors Pvt, Ltd

    Google Scholar 

  • NF P 94-051 (1993) Détermination des limites d'Atterberg—Limite de liquidité à la coupelle—Limite de plasticité au rouleau. AFNOR, p 15

  • NF P 94-07-1 (1994) Sols: reconnaissance et essais - Essai de cisaillement rectiligne à la boîte - Partie 1: cisaillement direct. AFNOR, Paris

  • NF P94-156 (1995) Soil: investigation and testing. Inclinometer measurements. AFNOR, Paris

  • NF P94-048: Sols: reconnaissance et essais—Détermination de la teneur en carbonate—Méthode du calcimètre. AFNOR, Paris

  • NF P94-110 (1991) Essai Pressiométrique Ménard. AFNOR, Paris

  • Oldenburg DW, Li Y (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 64(2):403–416. https://doi.org/10.1190/1.1444545

    Article  Google Scholar 

  • Olivier Ph (1990) Les unités de Beni Derkoul (Rif, Maroc); place et signification dans l’évolution alpine de la marge nord de la Téthys maghrébine. Bull Soc Géol France IV 1:145–154. https://doi.org/10.2113/gssgfbull.VI.1.145

    Article  Google Scholar 

  • PCD (2016) Plan Communal de Développement Commune urbaine. https://issuu.com/artpublications/docs/pcd_chefchaouen. Accessed 05 Mars 2020.

  • Peduto D, Ferlisi S, Nicodemo G, Reale D, Pisciotta G, Gullà G (2017) Empirical fragility and vulnerability curves for buildings exposed to slow-moving landslides at medium and large scales. Landslides 14(6):1993–2007. https://doi.org/10.1007/s10346-017-0826-7

    Article  Google Scholar 

  • Perrone A, Lapenna V, Piscitelli S (2014) Electrical resistivity tomography technique for landslide investigation: a review. Earth Sci Rev 135:65–82. https://doi.org/10.1016/j.earscirev.2014.04.002

    Article  Google Scholar 

  • Prokos H, Baba H, Lóczy D, El Kharim Y (2016) Geomorphological hazards in a Mediterranean mountain environment—example of Tétouan Morocco. Hangarian Geograph Bull 65(3):283–295. https://doi.org/10.15201/hungeobull.65.3.6

    Article  Google Scholar 

  • Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect 40(4):453–463. https://doi.org/10.1111/j.1365-2478.1992.tb00536.x

    Article  Google Scholar 

  • Schuster RL, Highland LM (2006) The Third Hans Cloos Lecture Urban landslides: socioeconomic impacts and overview of mitigative strategies. Bull Eng Geol Environ 66(1):1–27. https://doi.org/10.1007/s10064-006-0080-z

    Article  Google Scholar 

  • Smyth CG, Royle SA (2000) Urban landslide hazards: incidence and causative factors in Niteroi, Rio de Janeiro State. Brazil Appl Geogr 20(2):95–117. https://doi.org/10.1016/S0143-6228(00)00004-7

    Article  Google Scholar 

  • Soini F (2005) Land use change patterns and livelihood dynamics on the slopes of Mt. Kilimanjaro, Tanzania. Agric Syst 85(3):306–323. https://doi.org/10.1016/j.agsy.2005.06.013

    Article  Google Scholar 

  • Tokimatsu K, Mizuno H, Kakurai M (1996) Building damage associated with geotechnical problems. Soils Found 36:219–234. https://doi.org/10.3208/sandf.36.Special_219

    Article  Google Scholar 

  • XP P 94-090-1 (1997) Sols: reconnaissance et essais—Essai oedométrique—Partie 1: essai de compressibilité sur matériaux fins quasi saturés avec chargement par paliers. AFNOR, Paris

Download references

Acknowledgements

The authors wish to thank the municipality of Checfchaouen for giving us access to inclinometer data regarding the 2016 landslide event. This research was supported by funds from CNRST (PPR2 Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bounab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Kharim, Y., Bounab, A., Ilias, O. et al. Landslides in the urban and suburban perimeter of Chefchaouen (Rif, Northern Morocco): inventory and case study. Nat Hazards 107, 355–373 (2021). https://doi.org/10.1007/s11069-021-04586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04586-z

Keywords

Navigation