Skip to main content

Locking-derived tsunami scenarios for the most recent megathrust earthquakes in Chile: implications for tsunami hazard assessment

Abstract

The ever-increasing data from continues geodetic networks has allowed to reveal first-order spatial relations between pre-seismic highly locked zones on the interface and regions of large coseismic slip. Here we use a distribution of locking degree and recurrence of historical earthquakes along the Chilean subduction zone to estimate the slip deficit accumulated since previous tsunamigenic earthquakes and use these constrains to simulate tsumani signals. We generate tsunami models for the recent five major tsunamigenic earthquakes in Chile during the last decade: Maule (2010), Pisagua (2014), Illapel (2015), Melinka (2016) and Valparaiso (2017). Results were compared with tsunami records to evaluate the use of locking degree as an estimate of displacement of future earthquakes and as a tool for tsunami hazard assessment. Our tsunami simulations for the Maule (2010) and Illapel (2015), earthquakes that filled a seismic gap, reproduce well the tsunami observations, for the case of Pisagua (2014), Valparaiso (2016) and Melinka (2017) although it exists a correspondence in the areas of greater degree of locking with the coseismic slip, there is also an imbalance between the energy accumulated and released in the interseismic period considered according to the historical seismicity. This indicate that the rupture of small asperities (areas that release high slip during earthquakes) may have a complex pattern of recurrence and do not fully affect a locked patch. Locking-derived tsunami scenarios represent well tsunami observations of earthquakes that ruptured a locked seismic gap, and they can be used in addition to the actual methodologies to improve the estimation of tsunami hazard.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Amante C, Eakins BW (2009) Etopo1 arc-minute global relief model: procedures, data sources and analysis. National Geophysical Data Center, NOAA

  • Anderson JG (2004) Quantitative measure of the goodness-of-fit of synthetic seismograms. In: Proceedings of the 13th world conference on earthquake engineering, international association for earthquake engineering, p 243

  • Aránguiz R, Urra L, Okuwaki R, Yagi Y (2018) Development and application of a tsunami fragility curve of the 2015 tsunami in Coquimbo, Chile. Nat Hazards Earth Syst Sci 18(8):2143–2160

    Google Scholar 

  • Baranes H, Woodruff JD, Loveless JP, Hyodo M (2018) Interseismic coupling-based earthquake and tsunami scenarios for the Nankai Trough. Geophys Res Lett 45(7):2986–2994

    Google Scholar 

  • Barrientos SE, Ward SN (1990) The 1960 chile earthquake: inversion for slip distribution from surface deformation. Geophys J Int 103(3):589–598

    Google Scholar 

  • Beck S, Barrientos S, Kausel E, Reyes M (1998) Source characteristics of historic earthquakes along the central Chile subduction Askew et alzone. J S Am Earth Sci 11(2):115–129

    Google Scholar 

  • Becker J, Sandwell D, Smith W, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S et al (2009) Global bathymetry and elevation data at 30 arc seconds resolution: Srtm30\_plus. Mar Geod 32(4):355–371

    Google Scholar 

  • Bellotti G, Briganti R, Beltrami G (2012) The combined role of bay and shelf modes in tsunami amplification along the coast. J Geophys Res Oceans 117(C8):c08027

    Google Scholar 

  • Calisto I, Ortega M, Miller M (2015) Observed and modeled tsunami signals compared by using different rupture models of the April 1, 2014, iquique earthquake. Nat Hazards 79(1):397–408

    Google Scholar 

  • Calisto I, Miller M, Constanzo I (2017) Comparison between tsunami signals generated by different source models and the observed data of the illapel 2015 earthquake. In: The Chile-2015 (Illapel) earthquake and tsunami. Springer, pp 287–297

  • Campos J, Hatzfeld D, Madariaga R, Lopez G, Kausel E, Zollo A, Iannacone G, Fromm R, Barrientos S, Lyon-Caen H (2002) A seismological study of the 1835 seismic gap in South-Central Chile. Phys Earth Planet Inter 132(1–3):177–195

    Google Scholar 

  • Carvajal M, Cisternas M, Catalán P (2017a) Source of the 1730 Chilean earthquake from historical records: implications for the future tsunami hazard on the coast of Metropolitan Chile. J Geophys Res Solid Earth 122(5):3648–3660

    Google Scholar 

  • Carvajal M, Gubler A (2016) The effects on tsunami hazard assessment in chile of assuming earthquake scenarios with spatially uniform slip. In: Global tsunami science: past and future, vol I. Springer, pp 3693–3702

  • Chlieh M, Avouac JP, Sieh K, Natawidjaja DH, Galetzka J (2008) Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J Geophys Res Solid Earth 113(B5):2156–2202

    Google Scholar 

  • Cisternas M, Atwater BF, Torrejón F, Sawai Y, Machuca G, Lagos M, Eipert A, Youlton C, Salgado I, Kamataki T et al (2005) Predecessors of the giant 1960 Chile earthquake. Nature 437(7057):404

    Google Scholar 

  • Cisternas M, Carvajal M, Wesson R, Ely L, Gorigoitia N (2017b) Exploring the historical earthquakes preceding the giant 1960 Chile earthquake in a time-dependent seismogenic zoneexploring the historical earthquakes preceding the giant 1960 chile earthquake. Bull Seismol Soc Am 107(6):2664–2675

    Google Scholar 

  • Comte D, Pardo M (1991) Reappraisal of great historical earthquakes in the Northern Chile and southern peru seismic gaps. Nat Hazards 4(1):23–44

    Google Scholar 

  • Delouis B, Monfret T, Dorbath L, Pardo M, Rivera L, Comte D, Haessler H, Caminade J, Ponce L, Kausel E (1997) The mw = 8.0 antofagasta (northern Chile) earthquake of 30 July 1995: a precursor to the end of the large 1877 gap. Bull Seismol Soc Am 87(2):427–445

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194

    Google Scholar 

  • Geersen J, Ranero CR, Barckhausen U, Reichert C (2015) Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique Earthquake Area. Nat Commun 6:8267

    Google Scholar 

  • Goldfinger C, Ikeda Y, Yeats RS, Ren J (2013) Superquakes and supercycles. Seismol Res Lett 84(1):24–32

    Google Scholar 

  • González J, González G, Aránguiz R, Melgar D, Zamora N, Shrivastava MN, Das R, Catalán PA, Cienfuegos R (2020) A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile. Nat Hazards 100(1):231–254

    Google Scholar 

  • Graham M (1824) Xxv.—an account of some effects of the late earthquakes in chili. extracted from a letter to henry warburton esq. vpgs. Trans Geol Soc Lond 2(2):413–415

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res Solid Earth 84(B5):2348–2350

    Google Scholar 

  • Harris DB (1991) A waveform correlation method for identifying quarry explosions. Bull Seismol Soc Am 81(6):2395–2418

    Google Scholar 

  • Hayes GP, Wald DJ, Johnson RL (2012) Slab10: a three-dimensional model of global subduction zone geometries. J Geophys Res Solid Earth 117(B1):15

    Google Scholar 

  • Kelleher JA (1972) Rupture zones of large South American earthquakes and some predictions. J Geophys Res 77(11):2087–2103

    Google Scholar 

  • Khazaradze G, Klotz J (2003) Short-and long-term effects of GPS measured crustal deformation rates along the South Central Andes. J Geophys Res Solid Earth 108(B6):4538–4544

    Google Scholar 

  • Kious WJ, Tilling RI (1996) This dynamic Earth: the story of plate tectonics. DIANE Publishing, Collingdale

    Google Scholar 

  • Klotz J, Khazaradze G, Angermann D, Reigber C, Perdomo R, Cifuentes O (2001) Earthquake cycle dominates contemporary crustal deformation in central and southern andes. Earth Planet Sci Lett 193(3–4):437–446

    Google Scholar 

  • Lange D, Rietbrock A, Haberland C, Bataille K, Dahm T, Tilmann F, Flüh E (2007) Seismicity and geometry of the south chilean subduction zone (41.5 s-43.5 s): implications for controlling parameters. Geophys Res Lett 34(6):L06311

    Google Scholar 

  • Li S, Moreno M, Bedford J, Rosenau M, Oncken O (2015) Revisiting viscoelastic effects on interseismic deformation and locking degree: a case study of the Peru-North Chile subduction zone. J Geophys Res Solid Earth 120(6):4522–4538

    Google Scholar 

  • Lomnitz C (1970) Major earthquakes and tsunamis in chile during the period 1535 to 1955. Geol Rundsch 59(3):938–960

    Google Scholar 

  • Lomnitz C (2004) Major earthquakes of Chile: a historical survey, 1535–1960. Seismol Res Lett 75(3):368–378

    Google Scholar 

  • Loveless JP, Meade BJ (2011) Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 mw= 9.0 tohoku-oki earthquake. Geophys Res Lett 38(17):17306

    Google Scholar 

  • Loveless JP, Meade BJ (2016) Two decades of spatiotemporal variations in subduction zone coupling offshore Japan. Earth Planet Sci Lett 436:19–30

    Google Scholar 

  • Madariaga R, Métois M, Vigny C, Campos J (2010) Central Chile finally breaks. Science 328(5975):181–182

    Google Scholar 

  • Maksymowicz A (2015) The geometry of the chilean continental wedge: tectonic segmentation of subduction processes off Chile. Tectonophysics 659:183–196

    Google Scholar 

  • Masamura K, Fujima K, Goto C, Iida K, Shigemura T (2000) Theoretical solution of long wave considering the structure of bottom boundary layer and examinations on wave decay due to sea bottom friction. Doboku Gakkai Ronbunshu 663:69–78

    Google Scholar 

  • Melgar D, Williamson AL, Salazar-Monroy EF (2019) Differences between heterogenous and homogenous slip in regional tsunami hazards modelling. Geophys J Int 219(1):553–562

    Google Scholar 

  • Melnick D, Moreno M, Quinteros J, Baez JC, Deng Z, Li S, Oncken O (2017) The super-interseismic phase of the megathrust earthquake cycle in Chile. Geophys Res Lett 44(2):784–791

    Google Scholar 

  • Métois M, Socquet A, Vigny C (2012) Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. J Geophys Res Solid Earth 117(B3):B03406

    Google Scholar 

  • Métois M, Socquet A, Vigny C, Carrizo D, Peyrat S, Delorme A, Maureira E, Valderas-Bermejo MC, Ortega I (2013) Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys J Int 194(3):1283–1294

    Google Scholar 

  • Metois M, Vigny C, Socquet A (2016) Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38–18 s). Pure Appl Geophys 173(5):1431–1449

    Google Scholar 

  • Moernaut J, Van Daele M, Heirman K, Fontijn K, Strasser M, Pino M, Urrutia R, De Batist M (2014) Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in South Central Chile. J Geophys Res Solid Earth 119(3):1607–1633

    Google Scholar 

  • Moreno MS, Bolte J, Klotz J, Melnick D (2009) Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophys Res Lett 36(16):L16310

    Google Scholar 

  • Moreno M, Rosenau M, Oncken O (2010) 2010 maule earthquake slip correlates with pre-seismic locking of andean subduction zone. Nature 467(7312):198

    Google Scholar 

  • Moreno M, Melnick D, Rosenau M, Bolte J, Klotz J, Echtler H, Baez J, Bataille K, Chen J, Bevis M et al (2011) Heterogeneous plate locking in the south-central chile subduction zone: building up the next great earthquake. Earth Planet Sci Lett 305(3–4):413–424

    Google Scholar 

  • Moreno M, Melnick D, Rosenau M, Baez J, Klotz J, Oncken O, Tassara A, Chen J, Bataille K, Bevis M et al (2012) Toward understanding tectonic control on the mw 8.8 2010 maule Chile earthquake. Earth Planet Sci Lett 321:152–165

    Google Scholar 

  • Moreno M, Li S, Melnick D, Bedford J, Baez J, Motagh M, Metzger S, Vajedian S, Sippl C, Gutknecht B et al (2018) Chilean megathrust earthquake recurrence linked to frictional contrast at depth. Nat Geosci 11(4):285

    Google Scholar 

  • Muhammad A, Goda K (2018) Impact of earthquake source complexity and land elevation data resolution on tsunami hazard assessment and fatality estimation. Comput Geosci 112:83–100

    Google Scholar 

  • Nishenko SP (1991) Circum-pacific seismic potential: 1989–1999. In: Aspects of pacific seismicity. Springer, pp 169–259

  • Nishimura T, Hirasawa T, Miyazaki S, Sagiya T, Tada T, Miura S, Tanaka K (2004) Temporal change of interplate coupling in Northeastern Japan during 1995–2002 estimated from continuous GPS observations. Geophys J Int 157(2):901–916

    Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Papazachos B, Scordilis E, Panagiotopoulos D, Papazachos C, Karakaisis G (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. Bull Geol Soc Greece 36(3):1482–1489

    Google Scholar 

  • Power W, Wallace L, Wang X, Reyners M (2012) Tsunami hazard posed to New Zealand by the Kermadec and Southern new hebrides subduction margins: an assessment based on plate boundary kinematics, interseismic coupling, and historical seismicity. Pure Appl Geophys 169(1–2):1–36

    Google Scholar 

  • Ruegg J, Rudloff A, Vigny C, Madariaga R, De Chabalier J, Campos J, Kausel E, Barrientos S, Dimitrov D (2009) Interseismic strain accumulation measured by GPS in the seismic gap between constitución and concepción in Chile. Phys Earth Planet Inter 175(1–2):78–85

    Google Scholar 

  • Ruiz S, Madariaga R (2018) Historical and recent large megathrust earthquakes in Chile. Tectonophysics 733:37–56

    Google Scholar 

  • Ruiz S, Metois M, Fuenzalida A, Ruiz J, Leyton F, Grandin R, Vigny C, Madariaga R, Campos J (2014) Intense foreshocks and a slow slip event preceded the 2014 iquique mw 8.1 earthquake. Science 345(6201):1165–1169

    Google Scholar 

  • Ruiz S, Moreno M, Melnick D, Del Campo F, Poli P, Baez J, Leyton F, Madariaga R (2017a) Reawakening of large earthquakes in South Central Chile: the 2016 mw 7.6 chiloé event. Geophys Res Lett 44(13):6633–6640

    Google Scholar 

  • Ruiz S, Aden-Antoniow F, Baez J, Otarola C, Potin B, del Campo F, Poli P, Flores C, Satriano C, Leyton F et al (2017b) Nucleation phase and dynamic inversion of the mw 6.9 valparaíso 2017 earthquake in Central Chile. Geophys Res Lett 44(20):10–290

    Google Scholar 

  • Schurr B, Asch G, Hainzl S, Bedford J, Hoechner A, Palo M, Wang R, Moreno M, Bartsch M, Zhang Y et al (2014) Gradual unlocking of plate boundary controlled initiation of the 2014 iquique earthquake. Nature 512(7514):299

    Google Scholar 

  • Si Watanabe, Bock Y, Melgar D, Tadokoro K (2018) Tsunami scenarios based on interseismic models along the Nankai Trough, Japan, from seafloor and onshore geodesy. J Geophys Res Solid Earth 123(3):2448–2461

    Google Scholar 

  • Tilmann F, Zhang Y, Moreno M, Saul J, Eckelmann F, Palo M, Deng Z, Babeyko A, Chen K, Baez J et al (2016) The 2015 illapel earthquake, Central Chile: a type case for a characteristic earthquake? Geophys Res Lett 43(2):574–583

    Google Scholar 

  • Udías A, Madariaga R, Buforn E, Muñoz D, Ros M (2012) The large chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents. Bull Seismol Soc Am 102(4):1639–1653

    Google Scholar 

  • Wang X (2009) User manual for comcot version 1.7 (first draft). Cornel University 65

  • Yamazaki Y, Cheung KF (2011) Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophys Res Lett 38(12):L12605

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge SHOA for the bathymetry and tide gauges data use in this work, Frederik Tilmann, Bernd Schurr and Sergio Ruiz for provide his coseismic models, Marcos Moreno and Shaoyang Li for provide his locking models used on this work and to the reviewers since their comments improved this article. J.D. acknowledges support from ANILLO (ACT192169), Millennium Nucleus (NC160025) and PhD scholarship awarded by Universidad de Concepcion. M. M. acknowledges support from Fondo Nacional de Desarrollo Científico y Tecnológico (1181479), ANILLO (ACT192169), Millennium Nucleus (NC160025), and CONICYT/FONDAP (15110017) projects. I.C acknowledged support from Millennium Nucleus (NC160025)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Drápela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drápela, J., Calisto, I. & Moreno, M. Locking-derived tsunami scenarios for the most recent megathrust earthquakes in Chile: implications for tsunami hazard assessment. Nat Hazards 107, 35–52 (2021). https://doi.org/10.1007/s11069-021-04572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04572-5

Keywords

  • Fault models
  • Tsunami modelling
  • Seismic cycle