Spatiotemporal variability of multifractal properties of fineresolution daily gridded rainfall fields over India

Abstract

This study investigated the multifractal characteristics of fine resolution (0.25ox0.25°) daily gridded rainfall fields of India over the period 1901–2013 to examine their spatiotemporal variability. The scaling characterization using Multifractal Detrended Fluctuation Analysis (MFDFA) detected short-term persistency and strong multifractality in the majority of rainfall (over 81%) of the grid points. A detailed exploration on the spatial variability of multifractal properties such as Hurst exponent, spectral width, asymmetry index, Hölder exponent are also performed for six rainfall homogenous regions and 34 meteorological subdivisions in India. The results showed that the highest persistence and complexity is noted in the mountainous terrains of northern and northeastern India. The sub-divisional scale analysis showed that the variability of persistence and complexity is the highest in Kerala and lowest at Vidarbha. Further, the evaluation of multifractal properties of rainfall series of pre- and post-1976/77 Pacific climate shift showed an increase in strength of multifractality in 62% grids after the shift. Changes in the status of persistence with respect to 1976/77 is the highest at Uttaranchal subdivision and changes from positive to negative asymmetry was the highest at northwestern (NW) region. Grid points of Peninsular India exhibited least reduction in complexity, multifractality and persistence in the post-1977 period when compared to pre-1977 period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adarsh S, Dharan DS, Anuja PK, Suman A (2018) Unravelling the scaling characteristics of daily streamflows of Brahmani river basin. SN Applied Sciences, India using Arbitrary Order Hilbert Spectral and Detrended Fluctuation Analyses. https://doi.org/10.1007/s42452-018-0056-1

    Google Scholar 

  2. Adarsh S, Nagesh Kumar D, Deepthi B, Gayathri G, Aswathy SS, Bhagyasree S (2019) Multifractal characterization of meteorological drought in India using detrended fluctuation analysis. Int J Climatol 39(11):4234–4255

    Article  Google Scholar 

  3. Adarsh S, Nourani V, Archana DS, Dharan DS (2020) Multifractal description of rainfall fields over India. J Hydrol. 586:124913. https://doi.org/10.1016/j.jhydrol.2020.124913

    Article  Google Scholar 

  4. Ali M, Deo RC, Downs NJ, Maraseni T (2018a) An ensemble-ANFIS based uncertainty assessment model for forecasting multi-scalar standardized precipitation index. Atmos Res 207:155–180

    Article  Google Scholar 

  5. Ali M, Deo RC, Maraseni T, Downs NJ (2019) Improving SPI-derived drought forecasts incorporating synoptic-scale climate indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated. J Hydrol 576:164–184

    Article  Google Scholar 

  6. Ali M, Deo RC, Downs NJ, Maraseni T (2018b) Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting. Comput Electron Agric 152:149–165

    Article  Google Scholar 

  7. Baranowski P, Krzyszczak J, Slawinski C, Hoffmann H, Kozyra J, Nieróbca A, Siwek K, Gluza A (2015) Multifractal analysis of meteorological time series to assess climate impacts. Clim Res 65:39–52

    Article  Google Scholar 

  8. Barredo JI (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42(1):125–148

    Article  Google Scholar 

  9. Bhalme HN, Mooley DA (1980) Large-scale droughts/floods and monsoon circulation. Mon Weather Rev 108(8):1197–1211

    Article  Google Scholar 

  10. Burgueño A, Lana X, Serra C, Martínez MD (2014) Daily extreme temperature multifractals in Catalonia (NESpain). Phys Lett A 378(2014):874–885

    Article  Google Scholar 

  11. Chattopadhyay J, Bhatla R (2002) Possible influence of QBO on teleconnections relating Indian summer monsoon rainfall and sea-surface temperature anomalies across the equatorial pacific. Int J Climatol 22(1):121–127

    Article  Google Scholar 

  12. Dahlstedt K, Jensen H (2005) Fluctuation spectrum and size scaling of river flow and level. Phys A 348:596–610

    Article  Google Scholar 

  13. Deidda R, Benzi R, Siccardi F (1999) Multifractal modeling of anomalous scaling laws in rainfall. Wat Resour Res 35(6):1853–1867

    Article  Google Scholar 

  14. Deidda R (1999) Multifractal analysis and simulation of rainfall fields in space. Phys Chem Earth: Part B. Hydrol Oceans Atmos 24:73–78

    Article  Google Scholar 

  15. Deidda R (2000) Rainfall downscaling in a space-time multifractal framework. Wat Resour Res 36(7):1779–1794

    Article  Google Scholar 

  16. Drożdż S, Oświȩcimka P, (2015) Detecting and interpreting distortions in hierarchical organization of complex time-series. Phys Rev E 91:030902

    Article  Google Scholar 

  17. Drożdż S, Minati L, Oświȩcimka P, Stanuszek M, Wątorek M (2019) Signatures of the crypto-currency market decoupling from the Forex. Future Internet 11(7):154. https://doi.org/10.3390/fi11070154

    Article  Google Scholar 

  18. Feng S, Hu Q, Qian Q (2004) Quality control of daily meteorological data in China, 1951–2000: A new dataset. Int J Climatol 24:853–870

    Article  Google Scholar 

  19. Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31:L12213. https://doi.org/10.1029/2004GL019733

    Article  Google Scholar 

  20. Ganguli P, Janga Reddy M (2013) Evaluation of trends and multivariate frequency analysis of droughts in three meteorological subdivisions of Western India. Int J Climatol 34(3):911–928

    Article  Google Scholar 

  21. Garcia-Marin AP, Estevez J, Medina-Cobo MT, Ayuso-Munoz JL (2015) Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. J Hydrol 529:106–119

    Article  Google Scholar 

  22. Garcia-Marin AP, Morbidelli R, Saltalippi C, Cifrodelli M, Estevez J, Flammini A (2019) On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach. J Hydrol 575(2019):1267–1279

    Article  Google Scholar 

  23. Ghosh S, Mujumdar PP (2007) Non-parametric methods for modeling GCM and scenario uncertainty in drought assessment. Wat Resour Res. https://doi.org/10.1029/2006WR005351

    Article  Google Scholar 

  24. Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. https://doi.org/10.1029/2005GL024803

    Article  Google Scholar 

  25. Graham NE (1994) Decadal scale variability in the 1970’s and 1980’s: Observations and model results. Clim Dyn 10:60–70

    Article  Google Scholar 

  26. Hartmann B, Wendler G (2005) The Significance of the 1976 Pacific Climate Shift in the Climatology of Alaska. J Clim 18(22):4824–4839

    Article  Google Scholar 

  27. Hou W, Feng G, Yan P, Li S (2018) Multifractal analysis of the drought area in seven large regions of China from 1961 to 2012. Meteorol Atmos Phys 130:459–471

    Article  Google Scholar 

  28. Huang Y, Schmitt FG, Lu Z, Liu Y (2009) Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. J Hydrol 373:103–111

    Article  Google Scholar 

  29. Huang Q, Chen Y, Xu S, Liu J (2014) Case study of applying Multifractal models for rainfall IDF analysis in China. J Hydrol Engng 19(1):205–210

    Article  Google Scholar 

  30. Hubert P (2001) Multifractals as a tool to overcome scale problems in hydrology. Hydrol Sci J 46(6):897–905

    Article  Google Scholar 

  31. Hurst HE (1965) Long-term storage: An experimental study. Constable, London

    Google Scholar 

  32. Hurst HE (1951) Long-term storage capacity of reservoirs. Transaction of American Society of Civil Engineers 116:770–808

    Google Scholar 

  33. Ihlen EAFE (2012) Introduction to multifractal detrended fluctuation analysis in MATLAB. Front physiol 3:141

    Article  Google Scholar 

  34. Kantelhardt JW, Koscielny-Bunde E, Rybski D, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of rainfall and river runoff records. J Geophys Res. https://doi.org/10.1029/2005JD005881

    Article  Google Scholar 

  35. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of non-stationary time series. Phys A 316(1–4):87–114

    Article  Google Scholar 

  36. Kantelhardt JW, Rybski D, Zschiegner SA, Braun P, Koscielny-Bunde E, Livina V, Havlin S, Bunde A (2003) Multifractality of river runoff and rainfall: comparison of fluctuation analysis and wavelet methods. Phys A 330:240–245

    Article  Google Scholar 

  37. Karatasou S, Santamouris M (2018) Multifractal analysis of high-frequency temperature time series in the urban environment. Climate 6(2):50

    Article  Google Scholar 

  38. Kolmogorov AN (1941) Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. Proc Acad Sci URSS Geochem Sect 30:299–303

    Google Scholar 

  39. Koscielny-Bunde E, Kantelhart JW, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol 322:120–137

    Article  Google Scholar 

  40. Krzyszczak J, Baranowski P, Zubik M, Hoffmann H (2017) Temporal scale influence on multifractal properties ofagro-meteorological time series. Agri Forest Meteorol 239(2017):223–235

    Article  Google Scholar 

  41. Krzyszczak J, Baranowski P, Zubik M, Kazandjiev V, Georgieva V, Sławiński C, Siwek K, Kozyra J, Nieróbca A (2018) Multifractal characterization and comparison of meteorological time series from two climatic zones. Theo Appl Climatol. https://doi.org/10.1007/s00704-018-2705-0

    Article  Google Scholar 

  42. Langridge R, Christian-Smith J, Lohse K (2006) Access and resilience: analyzing the construction of social resilience to the threat of water scarcity. Ecology and Society. https://doi.org/10.5751/ES-01825-110218

    Article  Google Scholar 

  43. Li E, Mu X, Zhao G, Gao P (2015) Multifractal detrended fluctuation analysis of streamflow in Yellow river basin, China. Water 7:1670–1686

    Article  Google Scholar 

  44. Mandelbrot B (1982) The fractal geometry of nature. WH Freeman Publishers, New York

    Google Scholar 

  45. Miller AJ, Rayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) The 1976–77 Climate Shift of the Pacific Ocean. Oceanography 7(1):21–26

    Article  Google Scholar 

  46. Obukhov AM (1949) Structure of the temperature field in a turbulent flow. Izv. Akad. Nauk. S.S.S.R Ser. Geogr Geofiz 13:58–69

    Google Scholar 

  47. Olsson J, Niemczynowicz J (1996) Multifractal analysis of daily spatial rainfall distributions. J Hydrol 187(1–2):29–43

    Article  Google Scholar 

  48. Pandey G, Lovejoy S, Schertzer D (1998) Multifractal analysis of daily river flows including extremes for basins five to two million square kilometers, one day to 75 years. J Hydrol 208:62–81

    Article  Google Scholar 

  49. Pathirana P, Herath S, Yamada T (2007) Estimating rainfall distributions at high temporal resolutions using a multifractal model. Hydrol Earth Sys Sci Disc 7(5):668–679

    Article  Google Scholar 

  50. Pai D, Sridhar L, Rajeevan M, Sreejith O, Satbhai N, Mukhopadhyay B (2014) Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65:1–18

    Google Scholar 

  51. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Physical rev E 49(2):1685

    Article  Google Scholar 

  52. Powell AM Jr, Xu J (2012) The 1977 Global Regime Shift: A Discussion of Its Dynamics and Impacts in the Eastern Pacific Ecosystem. Atmos Ocean 50(4):421–436

    Article  Google Scholar 

  53. Rego CRC, Frota HO, Gusmao MS (2013) Multifractality of Brazilian rivers. J Hydrol 495:208–215

    Article  Google Scholar 

  54. Schertzer D, Lovejoy S (1987) Physical modelling and analysis of rain and clouds by aniso–tropic scaling multiplicative processes. J Geophys Res 92:9693–9714

    Article  Google Scholar 

  55. Sahana AS, Ghosh S, Ganguly A (2015) Murtugudde R (2015) Shift in Indian summer monsoon onset during 1976/1977. Environ Res Lett 10:054006

    Article  Google Scholar 

  56. Shang P, Kame S (2005) Fractal nature of time series in the sediment transport phenomenon. Chaos Solitons Fractals 26:997–1007

    Article  Google Scholar 

  57. Shastri H, Paul S, Ghosh S, Karmakar S (2015) Impacts of urbanization on Indian summer monsoon rainfall extremes. J Geophys Res Atmos 120:495–516

    Article  Google Scholar 

  58. Serinaldi F (2010) Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models. Nonlin Processes Geophys 17(6):697–714

    Article  Google Scholar 

  59. Tan X, Gan TW (2017) Multifractality of Canadian rainfall and streamflow. Int J Climatol 37(S1):1221–1236

    Article  Google Scholar 

  60. Tessier Y, Lovejoy S, Schertzer D (1993) Universal multifractals: Theory and observations for rain and clouds. J Appl Meteorol 32(2):223–250

    Article  Google Scholar 

  61. Tessier Y, Lovejoy S, Hubert P, Schertzer D, Pecknold S (1996) Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J Geophys Res 101:26427–26440

    Article  Google Scholar 

  62. Trenberth KE (1990) Recent observed interdecadal climate changes in the northern hemisphere. Bull Am Meteorol Soc 71:988–993

    Article  Google Scholar 

  63. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  64. Veneziano A, Furcolo P (2002) Multifractality of rainfall and scaling of intensity-duration-frequency curves. Wat Resour Res 38(12):1–12

    Article  Google Scholar 

  65. Verrier S, de Montera L, Barthès L, Mallet C (2010) Multifractal analysis of African monsoon rain fields, taking into account the zero rain-rate problem. J Hydrol 389:111–120

    Article  Google Scholar 

  66. Vörösmarty CJ et al (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561

    Article  Google Scholar 

  67. Yu ZG, Leung Y, Chen YD, Zhang Q, Anh V, Zhou Y (2014) Multifractal analyses of daily rainfall time series in Pearl River basin of China. Phys A 405:193–202

    Article  Google Scholar 

  68. Wu L, Lee DE, Liu Z (2005) The 1976/77 North Pacific climate regime shift the role of subtropical ocean adjustment and coupled ocean-atmosphere feedbacks. J Climate. 18(23):5125–5140

    Article  Google Scholar 

  69. Zhang Q, Xu C-Y, Chen YD, Yu Z (2008) Multifractal detrended fluctuation analysis of streamflow series of the Yangtze river basin, China. Hydrol Process 22:4997–5003

    Article  Google Scholar 

  70. Zhang Q, Xu C-Y, Yu Z, Liu C-L, Chen Y-D (2009) Multifractal analysis of streamflow records of the East river basin (Pearl river), China. Phys A 388:927–934

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the service of India meteorological Department (IMD) for providing the 0.25°× 0.25° daily rainfall time series for performing this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mumtaz Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sankaran, A., Chavan, S.R., Ali, M. et al. Spatiotemporal variability of multifractal properties of fineresolution daily gridded rainfall fields over India. Nat Hazards (2021). https://doi.org/10.1007/s11069-021-04523-0

Download citation

Keywords

  • Multifractal
  • Rainfall
  • Correlation
  • Climate shift
  • Persistence
  • Complexity