Skip to main content

Meteorite impacts in the ocean: the danger of tsunamis on the coast of Buenos Aires Province, Argentina

Abstract

Comets, meteorites, or asteroids impacting against the Earth are not unusual events. Such impacts on the ocean could produce tsunamis which can reach coastal areas. This paper aimed to analyze the tsunami wave heights on the coast of Buenos Aires Province produced by a meteorite impact in the South Atlantic Ocean. This subject is carried out using a simplified analytical model based on the energy flux conservation. The worst scenario was obtained in the case of the meteorite falling at the deepest continental slope edge, on a transect orientated normally to Mar del Plata coast (around 42° S–54° W). The hazard would quickly decrease if the meteorite impacted farther this location. It was also inferred that, if the meteorite fell on the Patagonian or Brazilian continental shelves, or in the Pacific, Indian or North Atlantic oceans the dangerousness would be drastically reduced. Finally, the possible implementation of this simple analytical model is analyzed in different regions of the World Ocean.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aranguiz R, Catalán PA, Cecioni C, Bellotti G, Henriquez P, González J (2019) Tsunami resonance and spatial pattern of natural oscillation modes with multiple resonators. J Geophys Res 124(11):7797–7816. https://doi.org/10.1029/2019JC015206

    Article  Google Scholar 

  2. Amante C, Eakins BW (2018) Arc-minute global relief model: procedures, data sources and analysis. In: NOAA Technical Memorandum. NESDIS NGDC-24. National Geophysical Data Center, NOAA

  3. Cardona OD (2001) La necesidad de repensar de manera holística los conceptos de vulnerabilidad y riesgo “Una Crítica y una Revisión Necesaria para la Gestión”. In: International conference on vulnerability in disaster. Theory and practice. Wageningen University, Netherlands, pp 1–18

  4. CEPAL (2011) Efectos del cambio climático en la costa de América Latina y el Caribe. Guía Metodológica pp 1–31

  5. Chapman CR, Morrison D (1994) Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367:33–40

    Article  Google Scholar 

  6. Chapman CR, Durda DD, Gold RE (2001) Report: the comet/asteroid impact hazard: a systems approach. Office of Space Studies. pp 1–19

  7. Chesley SR, Ward SN (2006) A quantitative assessment of the human and economic hazard from impact-generated tsunami. Nat Hazards 38:355–374. https://doi.org/10.1007/s11069-005-1921-y

    Article  Google Scholar 

  8. Crawford D, Mader C (1998) Modeling the asteroid impact and tsunami. Sci Tsunami Hazards 16(1):21–30

    Google Scholar 

  9. Dean RG, Dalrymple RA (2004) Coastal processes with engineering applications. Cambridge University Press, Cambridge, p 488

    Google Scholar 

  10. Dragani WC (1997) Doctoral tesis: Una explicación del proceso generador de ondas de largo período en la Costa Bonaerense Argentina. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires

  11. Dragani WC, Mazio CA, Nuñez MN (2002) Sea level oscillations in coastal waters of the Buenos Aires province, Argentina. Cont Shelf Res 22:779–790

    Article  Google Scholar 

  12. Dragani WC, D’Onofrio EE, Grismeyer W, Fiore MME (2006) Tide gauge observations of the Indian ocean tsunamis, December 26 2004, in Buenos Aires coastal waters, Argentina. Cont Shelf Res 26:1543–1550. https://doi.org/10.1016/j.csr.2006.03.002

    Article  Google Scholar 

  13. Dragani WC, D’Onofrio EE, Grismeyer W, Fiore MME (2009) Vulnerability of the Atlantic Patagonian coast to tsunamis generated by submarine earthquakes located in the Scotia Arc region.Some numerical experiments. Nat Hazards 49(3):437–458. https://doi.org/10.1007/s11069-008-9289-4

    Article  Google Scholar 

  14. Fiore MME, D'Onofrio E, Pousa JL, Schnack EJ, Bértola GR (2009) Storm surges and coastal impacts at Mar del Plata, Argentina. Cont Shelf Res 29:1643–1649. https://doi.org/10.1016/j.csr.2009.05.004

    Article  Google Scholar 

  15. Galimov EM, Kolotov VP, Nazarov MA, Kostitsyn YA, Kubrakova IV, Kononkova NN, Roshchina IA, Alexeev VA, Kashkarov LL, Badyukov DD, Sevast’yanov VS (2013) Analytical Results for the Material of the Chelyabinsk Meteorite. Geochem Int 51:522–539

    Article  Google Scholar 

  16. Gisler GR (2011) Calculation of the impact of a small asteroid on a continental shelf. In: Planetary defense conference papers, Bucharest PDC, S4_1640_2161945

  17. Gisler GR (2013) Low-altitude atmospheric and water-surface effects of small impacts. In: Planetary defense conference papers, Flagstaff PDC, IAA-PDC13-05-05

  18. Gisler GR, Weaver RP, Mader CL, Gittings ML (2004) Two- and three-dimensional asteroid impact simulations. Comput Sci Eng 4:46–55. https://doi.org/10.1109/MCISE.2004.1289308

    Article  Google Scholar 

  19. Gisler GR, Weaver RP, Gittings M (2011) Calculations of asteroid impacts into deep and shallow water. Pure Appl Geophys 168:1187–1198. https://doi.org/10.1007/s00024-010-0225-7

    Article  Google Scholar 

  20. Hill JG, Goda MP (1993) The fragmentation of small asteroids in the atmosphere. Astron J 105(3):1114–1144

    Article  Google Scholar 

  21. INDEC (2010) Censo Nacional de Población, Hogares y Viviendas 2010: Resultados definitivos Serie B 2. Buenos Aires

  22. INDEC (2018) Mercado de trabajo. Tasas e indicadores socioeconómicos (EPH). Informes Técnicos. 3(51). Buenos Aires

  23. Inman D, Munk W, Balay M (1961) Spectra of low frequency ocean waves along the Argentine shelf. Deep Sea Res 8:155–164

    Article  Google Scholar 

  24. Isla FI, Madirolas A (2010) Pliocene submerged craters on the Upper Slope of Mar del Plata, Argentina. Bolletino di Geofisica Teorica ed Applicata 51(1):216–218

    Google Scholar 

  25. Kharif C, Pelinovsky E (2005) Asteroid impact tsunamis. C. R. Phys 6:361–366. https://doi.org/10.1016/j.crhy.2004.12.016

    Article  Google Scholar 

  26. Kvasnytsya V, Wirth R, Dobrzhinetskaya L, Matzel J, Jacobsen B, Hutcheon I, Tappero R, Kovalyukh M (2013) New evidence of meteoritic origin of the Tunguska cosmic body. Planet Sp Sci. https://doi.org/10.1016/j.pss.2013.05.003

    Article  Google Scholar 

  27. Lanfredi NW, Pousa JL, D’Onofrio EE (1998) Sea-level rise and related potential hazards on the Argentine Coast. J Coast Res 14:47–60

    Google Scholar 

  28. Lyne JE, Tauber M (1995) Origin of the Tunguska event. Nature 375:638–639. https://doi.org/10.1038/375638a0

    Article  Google Scholar 

  29. McCowan J (1894) On the highest wave of permanent type. Lond Edinb Dublin Philos Mag J Sci 38(233):351–358

    Article  Google Scholar 

  30. Medina RA, Dragani WC, Violante RA (2018) Un tsunami no reconocido en Mar del Plata. Ciencia Hoy 27(162):48–54

    Google Scholar 

  31. Merkens JL, Reimann L, Hinkel J, Vafeidis AT (2016) Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways. Global Planet Change 145:57–66. https://doi.org/10.1016/j.gloplacha.2016.08.009

    Article  Google Scholar 

  32. Nguyen TTX, Bonetti J, Rogers K, Woodroffe CD (2016) Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean Coast Manag 123:18–43. https://doi.org/10.1016/j.ocecoaman.2015.11.022

    Article  Google Scholar 

  33. Nicholls RJ, Wong PP, Burket VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, Van Der Linden PJ, Hanson CE (eds) Climate Change (2007): impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 315–356

    Google Scholar 

  34. Palmer CI, Leigh CW (1934) Plane and spherical trigonometry, 4th edn. McGraw-Hill Book Company, London, UK, p 226

    Google Scholar 

  35. Robertson DK, Gisler GR (2018) Near and far-field hazards of asteroid impacts in oceans. Acta Astronaut 156:262–277. https://doi.org/10.1016/j.actaastro.2018.09.018

    Article  Google Scholar 

  36. Rumpf CM, Lewis HG, Atkinson PM (2017) Asteroid impact effects and their immediate hazards for human populations. Geophys Res Lett 44:3433–3440. https://doi.org/10.1002/2017GL073191

    Article  Google Scholar 

  37. Schultz PH, Zarate M, Hames W, Camilión C, King J (1998) A 3.3-Ma impact in Argentina and possible consequences. Science 282(5396):2061–2063. https://doi.org/10.1126/science.282.5396.2061

    Article  Google Scholar 

  38. Shumilov OI, Kasatkina EA, Tereshchenko ED, Kulichkov SN, Vasilév AN (2003) Detection of infrasound from the Vitim bolide on September 24, 2002. J Exp Theor Phys Lett. https://doi.org/10.1134/1.1564232

    Article  Google Scholar 

  39. UNISDR (2017) Words into action guidelines: National disaster risk assessment. Published by United Nations International Strategy for Disaster Reduction, United Nations, p 77

  40. Ward SN, Asphaug E (2000) Asteroid impact tsunami: a probabilistic hazard assessment. Icarus 145:64–78. https://doi.org/10.1006/icar.1999.6336

    Article  Google Scholar 

  41. Weiss R, Wünnemann K, Bahlburg H (2006) Numerical modelling of generation, propagation and run-up of tsunamis caused by oceanic impacts: model strategy and technical solutions. Geophys J Int 167(1):77–88. https://doi.org/10.1111/j.1365-246X.2006.02889.x

    Article  Google Scholar 

  42. Wünnemann K, Weiss R (2015) The meteorite impact-induced tsunami hazard. Philos Trans R Soc A Math Phys Eng Sci 373(2053):20140381

    Article  Google Scholar 

  43. Wünnemann K, Weiss R, Hoffman K (2007) Characteristics of oceanic impact-induced large water waves - reevaluation of the tsunami hazard. Meteorit Planet Sci 42:1893–1903. https://doi.org/10.1111/j.1945-5100.2007.tb00548.x

    Article  Google Scholar 

  44. Yabushita S, Hatta N (1994) On the possible hazard on the major cities caused by asteroid impact in the Pacific ocean. Earth Moon Planets. https://doi.org/10.1007/BF00572195

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Walter Dragani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez, I., Wörner, S., Dragani, W. et al. Meteorite impacts in the ocean: the danger of tsunamis on the coast of Buenos Aires Province, Argentina. Nat Hazards 103, 2339–2354 (2020). https://doi.org/10.1007/s11069-020-04086-6

Download citation

Keywords

  • Tsunami
  • Meteorite
  • Analytical model
  • Long-wave approximation
  • Energy flux conservation
  • Buenos Aires coast