Skip to main content

Performance evaluation of regional climate model simulations at different spatial and temporal scales over the complex orography area of the Alpine region

Abstract

This work provides a significant contribution on the open debate in the climate community to establish the added value of very high-resolution configurations, characterized by a horizontal resolution below 4 km with respect to current state-of-the-art climate simulations (10–15 km). Specifically, it aims at assessing quantitative gains and losses in the performance of climate models caused by an enhancement in temporal and spatial resolution by evaluating the capability of different climate simulations in reproducing daily and sub-daily present precipitation dynamics over a complex orographic context such as the Alpine region. In this perspective, the results of three experiments (EURO-CORDEX ensemble mean, CCLM 8 and CCLM 2.2) at different spatial (~ 12, 8 and 2.2 km) and temporal (daily, 6 h and 3 h) scales are compared to gridded and point-scale observational datasets. Precipitation data are analyzed by mean of the Expert Team on Climate Change Detection and Indices indicators, as well as with statistical models able to evaluate the precipitation distribution and the extreme values for different durations of precipitation events. To objectively assess gains and losses in adopting high-resolution RCMs, data are elaborated assuming the distribution added value as metric, particularly focusing on the role of orography. The work returns, at daily scale, a gain in climate model performances moving from lower to higher horizontal resolution. At the same time, investigating the effect of the orography the simulation with the finest grid proves to better capture local precipitation dynamics at higher altitudes in terms of both sub-daily precipitation and extreme events.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Baldauf M, Schulz JP (2004) Prognostic precipitation in the lokal modell (LM) of DWD. COSMO Newsletter No. 4. Deutscher Wetterdienst, pp 177–180

  2. Ban N, Schmidli J, Schär C (2014) Evaluation of the new convective-resolving regional climate modeling approach in decade-long simulations. J Geophys Res Atmos 119:7889–7907. https://doi.org/10.1002/2014JD021478

    Article  Google Scholar 

  3. Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys Res Lett 42(4):1165–1172. https://doi.org/10.1002/2014GL062588

    Article  Google Scholar 

  4. Berg P, Christensen OB, Klehmet K, Lenderink G, Olsson J, Teichmann C, Yang W (2019) Summertime precipitation extremes in a EURO-CORDEX 0.11 ensemble at an hourly resolution. Nat Hazards Earth Syst Sci 19:957–971. https://doi.org/10.5194/nhess-19-957-2019

    Article  Google Scholar 

  5. Berthou S, Kendon EJ, Chan SC, Ban N, Leutwyler D, Schär C, Fosser G (2018) Pan-European climate at convection-permitting scale: a model intercomparison study. Clim Dyn 5:1–25. https://doi.org/10.1007/s00382-018-4114-6

    Article  Google Scholar 

  6. Brath A, Castellarin A, Montanari A (2003) Assessing the reliability of regional depth-duration-frequency equations for gaged and ungaged sites. Water Resour Res 39(12):1367

    Article  Google Scholar 

  7. Bucchignani E, Montesarchio M, Zollo AL, Mercogliano P (2016) High-resolution climate simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the 21st century. Int J Climatol 36(2):735–756. https://doi.org/10.1002/joc.4379

    Article  Google Scholar 

  8. Chan SC, Kendon EJ, Fowler HJ, Blenkinsop S, Ferro CAT, Stephenson DB (2013) Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Clim Dyn 41:1475–1495. https://doi.org/10.1007/s00382-012-1568-9

    Article  Google Scholar 

  9. Chan SC, Kendon EJ, Roberts N, Blenkinsop S, Fowler HJ (2018) Large-scale predictors for extreme hourly precipitation events in convection-permitting climate simulations. J Clim 31:2115–2131. https://doi.org/10.1175/JCLI-D-17-0404.1

    Article  Google Scholar 

  10. Ciervo F, Rianna G, Mercogliano P, Papa MN (2017) Effects of climate change on shallow landslides in a small coastal catchment in southern Italy. Landslides 14(3):1043–1055. https://doi.org/10.1007/s10346-016-0743-1

    Article  Google Scholar 

  11. Coppola E, Sobolowski S, Pichelli E et al (2018) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim Dyn. https://doi.org/10.1007/s00382-018-4521-8

    Article  Google Scholar 

  12. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  13. Di Luca A, de Elía R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Clim Dyn 38(5–6):1229–1247. https://doi.org/10.1007/s00382-011-1068-3

    Article  Google Scholar 

  14. Di Luca A, de Elía R, Laprise R (2015) Challenges in the quest for added value of regional climate dynamical downscaling. Curr Clim Change Rep 1:10–21. https://doi.org/10.1007/s40641-015-0003-9

    Article  Google Scholar 

  15. Doms G, Forstner J, Heise E, Herzog HJ, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz JP, Vogel G (2011a) A description of the nonhydrostatic regional COSMO model, part II: physical parameterization. http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf

  16. Doms G, Förstner J, Heise E, Herzog H-J, Raschendorfer M, Reinhardt T, Ritter T, Schrodin R, Schulz J-P, Vogel G (2011b) A description of the nonhydrostatic regional COSMO model. Part II: physical parameterization. Deutscher Wetterdienst

  17. Drobinski P, Ducrocq V, Alpert P, Anagnostou E et al (2014) HYMEX: a 10-year multidisciplinary program on the mediterranean water cycle. Bull Am Meteorol Soc 95(7):1063. https://doi.org/10.1175/bams-d-12-00242.1

    Article  Google Scholar 

  18. Ducrocq V, Ricard D, Lafore JP, Orain F (2002) Storm-scale numerical rainfall prediction for five precipitating events over France: on the importance of the initial humidity field. Weather Forecast 17(6):1236–1256. https://doi.org/10.1175/1520-0434(2002)017%3c1236:SSNRPF%3e2.0.CO;2

    Article  Google Scholar 

  19. Fosser G, Khodayar S, Berg P (2015) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44(1–2):45–60. https://doi.org/10.1007/s00382-014-2242-1

    Article  Google Scholar 

  20. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  21. Fumière Q, Déqué M, Nuissier O, Somot S, Alias A, Caillaud C, Laurantin O, Seity Y (2019) Extreme rainfall in Mediterranean France during the fall: added-value of the CNRM-AROME convection-permitting regional climate model. Clim Dyn. https://doi.org/10.1007/s00382-019-04898-8

    Article  Google Scholar 

  22. Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40(1):467–490. https://doi.org/10.1146/annurev-environ-102014-021217

    Article  Google Scholar 

  23. Giorgi F, Jones C, Asrar GR et al (2009) Addressing climate information needs at the regional level: the cordex framework. World Meteorol Organ Bull 58(3):175

    Google Scholar 

  24. Hackenbruch J, Schadler G, Schipper JW (2016) Added value of high-resolution regional climate simulations for regional impact studies. Meteorol Z 25(3):291–304. https://doi.org/10.1127/metz/2016/0701

    Article  Google Scholar 

  25. Hanel M, Buishand TA (2010) Analysis of precipitation extremes in an ensemble of transient regional climate model simulations for the Rhine basin. Clim Dyn. https://doi.org/10.1007/s00382-010-0822-2

    Article  Google Scholar 

  26. Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the generalized extreme-value distribution by the method of probability weighted moments. Technometrics 27(3):251–261. https://doi.org/10.1080/00401706.1985.10488049

    Article  Google Scholar 

  27. Isotta F et al (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34:1657–1675. https://doi.org/10.1002/joc.3794

    Article  Google Scholar 

  28. ISPRA (2012). Elaborazione delle serie temporali per la stima delle tendenze climatiche. Stato dell’Ambiente 32/12. ISBN 978-88-448-0559-3 (in Italian)

  29. Jacob D, Petersen J, Eggert B, Alias A et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578. https://doi.org/10.1007/s10113-013-0499-2

    Article  Google Scholar 

  30. Joint Research Centre (2003). Global land cover 2000 database, European Commission. Joint Research Centre. https://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php

  31. Kaufmann P (2008) Association of surface stations to NWP model grid points. COSMO Newsl 9:2

    Google Scholar 

  32. Kendon EJ et al (2017) Do convection-permitting regional climate models improve projections of future precipitation change? Bull Am Meteorol Soc 98:79–93. https://doi.org/10.1175/BAMS-D-15-0004.1

    Article  Google Scholar 

  33. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25:5791–5806. https://doi.org/10.1175/JCLI-D-11-00562.1

    Article  Google Scholar 

  34. Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change. https://doi.org/10.1038/nclimate2258

    Article  Google Scholar 

  35. Knist S, Goergen K, Simmer C (2018) Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe. Clim Dyn. https://doi.org/10.1007/s00382-018-4147-x

    Article  Google Scholar 

  36. Kotlarski S et al (2014) Regional climate modelling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev Discuss 7:217–293

    Article  Google Scholar 

  37. Lucas-Picher P, Wulff-Nielsen M, Christensen JH, Aðalgeirsdóttir G, Mottram R, Simonsen SB (2012) Very high resolution regional climate model simulations over Greenland: identifying added value. J Geophys Res 117:D02108. https://doi.org/10.1029/2011JD016267

    Article  Google Scholar 

  38. Maraun D, Widmann M (2018) Statistical downscaling and bias correction for climate research. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781107588783

    Book  Google Scholar 

  39. Mearns LO, Lettenmaier DP, McGinnis S (2015) Uses of results of regional climate model experiments for impacts and adaptation studies: the example of NARCCAP. Curr Clim Change Rep 1:1. https://doi.org/10.1007/s40641-015-0004-8

    Article  Google Scholar 

  40. Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806. https://doi.org/10.1175/1520-0469(1974)031%3c1791:AHOTCM%3e2.0.CO;2

    Article  Google Scholar 

  41. Montesarchio M, Zollo AL, Bucchignani E, Mercogliano P, Castellari S (2014) Performance evaluation of high-resolution regional climate simulations in the Alpine space and analysis of extreme events. J Geophys Res Atmos 119:3222–3237. https://doi.org/10.1002/2013JD021105

    Article  Google Scholar 

  42. Sungmi O, Foelsche U (2018) Assessment of spatial uncertainty of heavy local rainfall using a dense gauge network. Hydrol Earth Syst Sci Dis. https://doi.org/10.5194/hess-2018-517

    Article  Google Scholar 

  43. Padulano R, Del Giudice G (2020) A nonparametric framework for water consumption data cleansing: an application to a smart water network in Naples (Italy). J Hydroinformatics. https://doi.org/10.2166/hydro.2020.133

    Article  Google Scholar 

  44. Padulano R, Reder A, Rianna G (2019) An ensemble approach for the analysis of extreme rainfall under climate change in Naples (Italy). Hydrol Process 33(14):2020–2036. https://doi.org/10.1002/hyp.13449

    Article  Google Scholar 

  45. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376

    Article  Google Scholar 

  46. Piazza M, Prein AF, Truhetz H, Csaki A (2019) On the sensitivity of precipitation in convection-permitting climate simulations in the Eastern Alpine region. Meteorol. Z. https://doi.org/10.1127/metz/2019/0941

    Article  Google Scholar 

  47. Pilon R, Zhang C, Dudhia J (2016) Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales. J Geophys Res Atmos 121:10575–10600. https://doi.org/10.1002/2015jd024697

    Article  Google Scholar 

  48. Prein AF, Gobiet A, Suklitsch M, Truhetz H, Awan NK, Keuler K, Georgievski G (2013) Added value of convection permitting seasonal simulations. Clim Dyn 41(9–10):2655–2677. https://doi.org/10.1007/s00382-013-1744-6

    Article  Google Scholar 

  49. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361. https://doi.org/10.1002/2014RG000475

    Article  Google Scholar 

  50. Prein AF, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Maule CF, van Meijgaard E, Déqué M, Nikulin G, Vautard R, Colette A, Kjellström E, Jacob D (2016) Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Clim Dyn 46:383–412. https://doi.org/10.1007/s00382-015-2589-y

    Article  Google Scholar 

  51. Reder A, Rianna G, Mercogliano P, Pagano L (2016) Assessing the potential effects of climate changes on landslide phenomena affecting pyroclastic covers in Nocera Area (Southern Italy). Procedia Earth Planet Sci 16:166–176. https://doi.org/10.1016/j.proeps.2016.10.018

    Article  Google Scholar 

  52. Reder A, Iturbide M, Herrera S, Rianna G, Mercogliano P, Gutiérrez JM (2018) Assessing variations of extreme indices inducing weather hazards on critical infrastructures over Europe—the INTACT framework. Clim Change 148(1–2):123–138. https://doi.org/10.1007/s10584-018-2184-4

    Article  Google Scholar 

  53. Rianna G, Reder A, Mercogliano P, Pagano L (2017) Evaluation of variations in frequency of landslide events affecting pyroclastic covers in Campania Region under the effect of climate changes. Hydrology 4(3):34. https://doi.org/10.3390/hydrology4030034

    Article  Google Scholar 

  54. Rianna G, Reder A, Pagano L, Mercogliano P (2020) Assessing future variations in landslide occurrence due to climate changes: insights from an Italian test case. In: CNRIG 2019: geotechnical research for land protection and development, pp. 255–264. https://doi.org/10.1007/978-3-030-21359-6_27

  55. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325. https://doi.org/10.1175/1520-0493(1992)120%3c0303:ACRSFN%3e2.0.CO;2

    Article  Google Scholar 

  56. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348. https://doi.org/10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  57. Soares PMM, Cardoso RM (2017) A simple method to assess the added value using high-resolution climate distributions: application to the EURO-CORDEX daily precipitation. Int J Climatol. https://doi.org/10.1002/joc.5261

    Article  Google Scholar 

  58. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  59. Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain: precipitation over the Alps. J Geophys Res 120:3957–3972

    Google Scholar 

  60. Vezzoli R, Mercogliano P, Pecora S et al (2015) Hydrological simulation of Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. Sci Total Environ 521-522:346–358. https://doi.org/10.1016/j.scitotenv.2015.03.096

    Article  Google Scholar 

  61. Vié B, Nuissier O, Ducrocq V (2011) Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: uncertainty on initial conditions and lateral boundary conditions. Mon Weather Rev 139(2):403–423. https://doi.org/10.1175/2010MWR3487.1

    Article  Google Scholar 

  62. Zollo AL, Rillo V, Bucchignani E, Montesarchio M, Mercogliano P (2015) Extreme temperature and precipitation events over Italy: assessment of high-resolution simulations with COSMO-CLM and future scenarios. Int J Climatol 36(2):987–1004. https://doi.org/10.1002/joc.4401

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Italian Project of Strategic Interest NEXTDATA (http://www.nextdataproject.it) “A national system for recovery, storage, accessibility and dissemination of environmental and climatic data from mountain and marine areas.” We are also grateful to the World Climate Research Programme’s Working Group on Regional Climate, and the Working Group on Coupled Modeling, former coordinating body of CORDEX and responsible panel for CMIP5. The authors would like to thank MeteoSwiss and Agenzia Regionale per la Protezione dell’Ambiente (ARPA) Lombardia, for providing us with observational dataset (EURO4M-APGD and local weather data, respectively). The European Union Digital Elevation Model has been downloaded and adapted as produced using Copernicus data and information funded by the European Union—EU-DEM layers, with no modifications.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alfredo Reder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reder, A., Raffa, M., Montesarchio, M. et al. Performance evaluation of regional climate model simulations at different spatial and temporal scales over the complex orography area of the Alpine region. Nat Hazards 102, 151–177 (2020). https://doi.org/10.1007/s11069-020-03916-x

Download citation

Keywords

  • Climate model evaluation
  • High resolution
  • Sub-daily precipitation
  • Distribution added value
  • Extremes
  • Convection permitting models