Natural Hazards

, Volume 97, Issue 2, pp 775–791 | Cite as

Comparative study of three probabilistic methods for seismic hazard analysis: case studies of Sochi and Kamchatka

  • V. A. PavlenkoEmail author
  • A. Kijko
Original Paper


This study examines the effect of the procedures used in three different probabilistic seismic hazard analysis (PSHA) methods for estimating the rates of exceedance of ground motion. To evaluate the effect of these procedures, the Cornell–McGuire and Parametric-Historic methods, and the method based on Monte Carlo simulations are employed, and the seismic source model, based on spatially smoothed seismicity, is used in the calculations. Two regions in Russia were selected for comparison, and seismic hazard maps were prepared for return periods of 475 and 2475 years. The results indicate that the choice of a particular method for conducting PSHA has relatively little effect on the hazard estimates. The Cornell–McGuire method yielded the highest estimates, with the two other methods producing slightly lower estimates. The variation among the results based on the three methods appeared to be virtually independent of the return period. The variation in the results for the Sochi region was within 6%, and that for the Kamchatka region was within 10%. Accordingly, the considered PSHA methods would provide closely related results for areas of moderate seismic activity; however, the difference among the results would apparently increase with an increase in seismic activity.


Probabilistic seismic hazard analysis The Cornell–McGuire method The Parametric-Historic method Monte Carlo simulations 



We are grateful to Dr. Nina Medvedeva from the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences for provided earthquake catalogue, and to the USGS for their data (available at We are grateful to two anonymous reviewers for their valuable comments and suggestions.


  1. Akkar S, Bommer JJ (2007) Prediction of elastic displacement response spectra in Europe and the Middle East. Earthq Eng Struct Dyn 36:1275–1301. CrossRefGoogle Scholar
  2. Amorèse D (2007) Applying a change-point detection method on frequency–magnitude distributions. Bull Seismol Soc Am 97(5):1742–1749. CrossRefGoogle Scholar
  3. Assatourians K, Atkinson GM (2013) EqHaz: an open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismol Res Lett 84(3):516–524. CrossRefGoogle Scholar
  4. Atkinson GM, Boore DM (2003) Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 93(4):1703–1729. CrossRefGoogle Scholar
  5. Beauval C, Scotti O, Bonilla F (2006) The role of seismicity models in probabilistic seismic hazard estimation: comparison of a zoning and a smoothing approach. Geophys J Int 165(2):584–595. CrossRefGoogle Scholar
  6. Beauval C, Bard PY, Hainzl S, Guéguen P (2008) Can strong-motion observations be used to constrain probabilistic seismic-hazard estimates? Bull Seismol Soc Am 98(2):509–520. CrossRefGoogle Scholar
  7. Bommer JJ, Scherbaum F, Bungum H, Cotton F, Sabetta F, Abrahamson NA (2005) On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull Seismol Soc Am 95(2):377–389. CrossRefGoogle Scholar
  8. Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24(1):99–138. CrossRefGoogle Scholar
  9. Budnitz RJ, Apostolakis G, Boore DM, Cluff LS, Coppersmith KJ, Cornell CA, Morris PA (1997) Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. U.S. Nuclear Regulatory Commission Report NUREG/CR-6372Google Scholar
  10. Campbell KW (1982) Bayesian analysis of extreme earthquake occurrences. Part I. Probabilistic hazard model. Bull Seismol Soc Am 72(5):1689–1705Google Scholar
  11. Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24(1):139–171. CrossRefGoogle Scholar
  12. Cauzzi C, Faccioli E (2008) Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. J Seismol 12:453–475. CrossRefGoogle Scholar
  13. Chebrova AY, Chebrov VN, Gusev AA, Lander AV, Guseva EM, Mityushkina SV, Raevskaya AA (2015) The impacts of the \(M_W\) 8.3 Sea of Okhotsk earthquake of May 24, 2013 in Kamchatka and worldwide. J Volcanol Seismol 9(4):223–241. CrossRefGoogle Scholar
  14. Chiou BSJ, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 24(1):173–215. CrossRefGoogle Scholar
  15. Chubarova OS, Gusev AA, Chebrov VN (2010) The ground motion excited by the Olyutorskii earthquake of April 20, 2006 and by its aftershocks based on digital recordings. J Volcanol Seismol 4(2):126–138. CrossRefGoogle Scholar
  16. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606Google Scholar
  17. Das R, Wason HR, Sharma ML (2011) Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude. Nat Hazards 59(2):801–810. CrossRefGoogle Scholar
  18. DeGroot MH (1970) Optimal statistical decisions. McGraw-Hill, New YorkGoogle Scholar
  19. Delavaud E, Scherbaum F, Kuehn N, Riggelsen C (2009) Information-theoretic selection of ground-motion prediction equations for seismic hazard analysis: an applicability study using Californian data. Bull Seismol Soc Am 99(6):3248–3263. CrossRefGoogle Scholar
  20. Douglas J (2011) Ground-motion prediction equations 1964-2010. Final Rept. RP-59356-FR, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France, 444 pp.
  21. Ebel JE, Kafka AL (1999) A Monte Carlo approach to seismic hazard analysis. Bull Seismol Soc Am 89(4):854–866Google Scholar
  22. Frankel A (1995) Mapping seismic hazard in the Central and Eastern United States. Seismol Res Lett 66(4):8–21. CrossRefGoogle Scholar
  23. Frankel AD, Petersen MD, Mueller CS, Haller KM, Wheeler RL, Leyendecker EV, Wesson RL, Harmsen SC, Cramer CH, Perkins DM, Rukstales KS (2002) Documentation for the 2002 update of the national seismic hazard maps. U.S. Geological Survey, Open-file report 02-420Google Scholar
  24. Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367Google Scholar
  25. Gasperini P, Lolli B, Vannucci G (2013) Body-wave magnitude \(m_{{\rm b }}\) is a good proxy of moment magnitude \(M_{{\rm w }}\) for small earthquakes (\(m_{{\rm b}} < 4.5-5.0\)). Seismol Res Lett 84(6):932–937. CrossRefGoogle Scholar
  26. Goda K, Aspinall W, Taylor CA (2013) Seismic hazard analysis for the U.K.: sensitivity to spatial seismicity modelling and ground motion prediction equations. Seismol Res Lett 84(1):112–129. CrossRefGoogle Scholar
  27. Gorbatov A, Kostoglodov V, Suárez G, Gordeev E (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res 102(B8):17883–17898. CrossRefGoogle Scholar
  28. Gusev AA (1991) Intermagnitude relationships and asperity statistics. Pure Appl Geophys 136(4):515–527. CrossRefGoogle Scholar
  29. Gusev AA, Gordeev EI, Guseva EM, Petukhin AG, Chebrov VN (1997) The first version of the \(A_{\max }(M_W, R)\) relationship for Kamchatka. Pure Appl Geophys 149(2):299–312. CrossRefGoogle Scholar
  30. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188Google Scholar
  31. Hamada MS, Wilson AG, Reese CS, Martz HF (2008) Bayesian reliability. Springer, New YorkCrossRefGoogle Scholar
  32. Hanks TC, Beroza GC, Toda S (2012) Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis? Seismol Res Lett 83(5):759–564. CrossRefGoogle Scholar
  33. Hong HP, Goda K, Davenport AG (2006) Seismic hazard analysis: a comparative study. Can J Civ Eng 33(9):1156–1171. CrossRefGoogle Scholar
  34. Iervolino I (2013) Probabilities and fallacies: why hazard maps cannot be validated by individual earthquakes. Earthq Spectra 29(3):1125–1136. CrossRefGoogle Scholar
  35. Joyner WB, Boore DM (1993) Methods of regression analysis of strong motion data. Bull Seismol Soc Am 83(2):469–487Google Scholar
  36. Kanno T, Narita A, Morikawa N, Fujiwara H, Fukushima Y (2006) A new attenuation relation for strong ground motion in Japan based on recorded data. Bull Seismol Soc Am 96(3):879–897. CrossRefGoogle Scholar
  37. Kijko A, Graham G (1998) Parametric-historic procedure for probabilistic seismic hazard analysis. Part I: estimation of maximum regional magnitude \(m_{\max }\). Pure Appl Geophys 152(3):413–442. CrossRefGoogle Scholar
  38. Kijko A, Graham G (1999) “Parametric-historic” procedure for probabilistic seismic hazard analysis. Part II: assessment of seismic hazard at specified site. Pure Appl Geophys 154(1):1–22. CrossRefGoogle Scholar
  39. Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79(3):645–654Google Scholar
  40. Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82(1):120–134Google Scholar
  41. Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys Pol 59(4):674–700. CrossRefGoogle Scholar
  42. Kijko A, Smit A, Sellevoll MA (2016) Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bull Seismol Soc Am 106(3):1210–1222. CrossRefGoogle Scholar
  43. Klugman SA, Panjer HH, Willmot GE (2008) Loss models: from data to decisions. Wiley, HobokenCrossRefGoogle Scholar
  44. Kossobokov VG, Nekrasova AK (2012) Global seismic hazard assessment program maps are erroneous. Seism Instrum 48(2):162–170. CrossRefGoogle Scholar
  45. McGuire RK (1976) Fortran program for seismic risk analysis. U.S. Geological Survey, open-file report 76-67Google Scholar
  46. McGuire RK (1978) FRISK: computer program for seismic risk analysis using faults as earthquake sources. U.S. Geological Survey, open-file report 78-1007Google Scholar
  47. McGuire RK (1979) Adequacy of simple probability models for calculating felt-shaking hazard, using the Chinese earthquake catalog. Bull Seismol Soc Am 69(3):877–892Google Scholar
  48. McGuire RK (1993) Computations of seismic hazard. Ann Geofis 36(3–4):181–200. Google Scholar
  49. Mezcua J, Rueda J, García Blanco RM (2013) Observed and calculated intensities as a test of a probabilistic seismic-hazard analysis of Spain. Seismol Res Lett 84(5):772–780. CrossRefGoogle Scholar
  50. Milne WG, Davenport AG (1969) Distribution of earthquake risk in Canada. Bull Seismol Soc Am 59(2):729–754Google Scholar
  51. Miyazawa M, Mori J (2009) Test of seismic hazard map from 500 years of recorded intensity data in Japan. Bull Seismol Soc Am 99(6):3140–3149. CrossRefGoogle Scholar
  52. Molina S, Lindholm CD, Bungum H (2001) Probabilistic seismic hazard analysis: zoning free versus zoning methodology. Bollettino di Geofisica Teorica ed Applicata 42(1–2):19–39Google Scholar
  53. Musson RMW (2000) The use of Monte Carlo simulations for seismic hazard assessment in the U.K. Ann Geofisc 43(1):1–9. Google Scholar
  54. Ordaz M, Reyes C (1999) Earthquake hazard in Mexico City: observations versus computations. Bull Seismol Soc Am 89(5):1379–1383Google Scholar
  55. Pavlenko OV (2008) Characteristics of seismic wave attenuation in the crust and upper mantle of the Northern Caucasus. Izv Phys Solid Earth 44(6):487–494. CrossRefGoogle Scholar
  56. Pavlenko OV (2009) The study of the radiation characteristics and propagation of seismic waves in the North Caucasus by modeling the accelerograms of the recorded earthquakes. Izv Phys Solid Earth 45(10):874–884. CrossRefGoogle Scholar
  57. Pavlenko OV (2011) Regional differences in the characteristics of seismic wave emission and propagation in Kamchatka and the Northern Caucasus. Dokl Earth Sci 438(2):846–852. CrossRefGoogle Scholar
  58. Pavlenko OV (2016) The Q-factor estimates for the crust and upper mantle in the vicinity of Sochi and Anapa (North Caucasus). Izv Phys Solid Earth 52(3):353–363. CrossRefGoogle Scholar
  59. Pavlenko VA, Pavlenko OV (2016) The seismic wave absorption in the crust and upper mantle in the vicinity of the Kislovodsk seismic station. Izv Phys Solid Earth 52(4):492–502. CrossRefGoogle Scholar
  60. Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM, Frankel AD, Zeng Y, Rezaeian S, Harmsen SC, Boyd OS, Field N, Chen R, Rukstales KS, Luco N, Wheeler RL, Williams RA, Olsen AH (2014) Documentation for the 2014 update of the United States National seismic hazard maps. U.S. Geological Survey, open-file report 2014-1091.
  61. Petukhin AG, Gusev AA, Guseva EM, Gordeev EI, Chebrov VN (1999) Preliminary model for scaling of Fourier spectra of strong ground motion recorded on Kamchatka. Pure Appl Geophys 156(3):445–468. CrossRefGoogle Scholar
  62. Shumilina LS, Gusev AA, Pavlov VM (2000) An improved technique for determination of seismic hazard. J Earthq Predict Res 8:104–110Google Scholar
  63. Sokolov V, Ismail-Zadeh A (2016) On the use of multiple-site estimations in probabilistic seismic-hazard assessment. Bull Seismol Soc Am 106(5):2233–2243. CrossRefGoogle Scholar
  64. Spada M, Wiemer S, Kissling E (2011) Quantifying a potential bias in probabilistic seismic hazard assessment: seismotectonic zonation with fractal properties. Bull Seismol Soc Am 101(6):2694–2711. CrossRefGoogle Scholar
  65. Stafford PJ, Strasser FO, Bommer JJ (2008) An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region. Bull Earthq Eng 6(2):149–177. CrossRefGoogle Scholar
  66. Stein S, Geller R, Liu M (2011) Bad assumptions or bad luck: why earthquake hazard maps need objective testing. Seismol Res Lett 82(5):623–626. CrossRefGoogle Scholar
  67. Stein S, Geller R, Liu M (2012) Why earthquake hazard maps often fail and what to do about it. Tectonophysics 562–563:1–25. CrossRefGoogle Scholar
  68. Stein S, Spencer BD, Brooks EM (2015) Metrics for assessing earthquake-hazard map performance. Bull Seismol Soc Am 105(4):2160–2173. CrossRefGoogle Scholar
  69. Stirling M (2012) Earthquake hazard maps and objective testing: the hazard mapper’s point of view. Seismol Res Lett 83(2):231–232. CrossRefGoogle Scholar
  70. Stirling M, Gerstenberger M (2010) Ground motion-based testing of seismic hazard models in New Zealand. Bull Seismol Soc Am 100(4):1407–1414. CrossRefGoogle Scholar
  71. Tsampas AD, Scordilis EM, Papazachos CB, Karakaisis GF (2016) Global-magnitude scaling relations for intermediate-depth and deep-focus earthquakes. Bull Seismol Soc Am 106(2):418–434. CrossRefGoogle Scholar
  72. Veneziano D, Cornell CA, O’hara T (1984) Historical method for seismic hazard analysis. Electric Power Research Institute, report, NP-3438, Palo AltoGoogle Scholar
  73. Ward SN (1995) Area-based tests of long-term seismic hazard predictions. Bull Seismol Soc Am 85(5):1285–1298Google Scholar
  74. Wiemer S, García-Fernández M, Burg JP (2009) Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d). Swiss J Geosci 102(1):189–209. CrossRefGoogle Scholar
  75. Woo G (1996) Kernel estimation methods for seismic hazard area source modeling. Bull Seismol Soc Am 86(2):353–362Google Scholar
  76. Wyss M, Nekrasova A, Kossobokov V (2012) Errors in expected human losses due to incorrect seismic hazard estimates. Nat Hazards 62(3):927–935. CrossRefGoogle Scholar
  77. Yemanov AA, Yemanov AF, Kuznecov KG, Leskova YV, Novikov IS, Sychev IV, Fateev AV (2007) Seismic hazard assessment of the south territory of Kuzbass. NNC RK Bull 2(30):113–127Google Scholar
  78. Youngs RR, Chiou SJ, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol Res Lett 68(1):58–73. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Pretoria Natural Hazard CentrePretoriaSouth Africa
  2. 2.The Schmidt Institute of Physics of the Earth of the Russian Academy of SciencesMoscowRussia

Personalised recommendations