Advertisement

Natural Hazards

, Volume 97, Issue 3, pp 979–999 | Cite as

Development of a generic concept to analyze the accessibility of emergency facilities in critical road infrastructure for disaster scenarios: exemplary application for the 2017 wildfires in Chile and Portugal

  • Johanna Guth
  • Sven Wursthorn
  • Andreas Ch. Braun
  • Sina KellerEmail author
Original Paper
  • 104 Downloads

Abstract

Natural hazards such as earthquakes, floods, or wildfires pose a serious threat to road infrastructure. Especially in emergency situations, the society depends on the road infrastructure to maintain its functionality in terms of evacuation and accessibility to emergency facilities. In this paper, we develop a generic, multi-scale concept to analyze the accessibility to emergency facilities in critical road infrastructure for natural disaster scenarios. We follow a modular approach: The basic module evaluates the accessibility of emergency facilities by calculating an accessibility index. Other modules enable the calculation of a grid-based index and the generation of a degraded network based on a natural disaster scenario. OpenStreetMap serves as a free-to-use and worldwide available database for the road network and the emergency facility location. The concept is applied exemplarily for two wildfire scenarios of different geographic scales: the January 2017 Wildfires in the BioBío and Maule region located in central Chile and the June 2017 Wildfires in central Portugal. An impact analysis of the wildfires on the accessibility of emergency facilities is performed and evaluated. As a result, the concept provides a valuable and data-sparse decision aid tool for regional planners and disaster control. It can be used in different stages of the disaster risk management cycle. In the mitigation and preparation phase, places with poor accessibility can be identified. In the short-term response phase after a disaster, the quick identification of critical and disconnected road network parts assists disaster control in planning a possible reaction strategy.

Keywords

Critical road infrastructure Wildfire Disaster risk management Accessibility Emergency facilities OpenStreetMap 

Notes

Acknowledgements

We thank the Center for Disaster Management and Risk Reduction Technology (CEDIM) and Prof. Dr.-Ing. Stefan Hinz of the Institute of Photogrammetry and Remote Sensing at the Karlsruhe Institute of Technology for the funding of this work.

References

  1. Antunes A, Seco A, Pinto N (2003) An accessibility-maximization approach to road network planning. Comput Aided Civil Infrastruct Eng 18(3):224–240.  https://doi.org/10.1111/1467-8667.00312 CrossRefGoogle Scholar
  2. Atzl A, Keller S (2013) A systemic approach for the analysis of infrastructure-specific social vulnerability. From Soc Vulnerability Resil Meas Prog Towards Disaster Risk Reduct 17:27–43Google Scholar
  3. Berdica K (2002) An introduction to road vulnerability: What has been done, is done and should be done. Transp Policy 9:117–127.  https://doi.org/10.1016/S0967-070X(02)00011-2 CrossRefGoogle Scholar
  4. Bono F, Gutiérrez E (2011) A network-based analysis of the impact of structural damage on urban accessibility following a disaster: the case of the seismically damaged Port Au Prince and Carrefour urban road networks. J Transp Geogr 19(6):1443–1455.  https://doi.org/10.1016/j.jtrangeo.2011.08.002 CrossRefGoogle Scholar
  5. Chanta S, Mayorga ME, McLay LA (2014) Improving emergency service in rural areas: a bi-objective covering location model for EMS systems. Ann Op Res 221(1):133–159.  https://doi.org/10.1007/s10479-011-0972-6 CrossRefGoogle Scholar
  6. Chen A, Yang C, Kongsomsaksakul S, Lee M (2007) Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Netw Spat Econ 7(3):241–256.  https://doi.org/10.1007/s11067-006-9012-5 CrossRefGoogle Scholar
  7. Cova TJ, Theobald DM, Norman JB, Siebeneck LK (2013) Mapping wildfire evacuation vulnerability in the western US: the limits of infrastructure. GeoJournal 78(2):273–285.  https://doi.org/10.1007/s10708-011-9419-5 CrossRefGoogle Scholar
  8. Demirel H, Kompil M, Nemry F (2015) A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges. Transp Res Part A Policy Pract 81:62–76.  https://doi.org/10.1016/j.tra.2015.05.002 CrossRefGoogle Scholar
  9. Diaz JM (2012) Economic impacts of wildfire. South Fire Exch SFE Fact Sheets 7:1–4Google Scholar
  10. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271.  https://doi.org/10.1007/BF01386390 CrossRefGoogle Scholar
  11. ERCC (2017) Portugal—Forest Fires UPDATE 22/06/2017. Tech. rep., European Civil Protection and Humaniratian Aid Operations, Emergency Response Coordination CentreGoogle Scholar
  12. Fairbairn D, Al-Bakri M (2013) Using geometric properties to evaluate possible integration of authoritative and volunteered geographic information. ISPRS Int J Geo-Inf 2(2):349–370.  https://doi.org/10.3390/ijgi2020349 CrossRefGoogle Scholar
  13. Faturechi R, Miller-Hooks E (2014) Measuring the performance of transportation infrastructure systems in disasters: a comprehensive review. J Infrastruct Syst 21(1):1–15.  https://doi.org/10.1061/(ASCE)IS.1943-555X.0000212 CrossRefGoogle Scholar
  14. Finney MA, McHugh CW, Grenfell IC, Riley KL, Short KC (2011) A simulation of probabilistic wildfire risk components for the continental United States. Stoch Environ Res Risk Assess 25(7):973–1000.  https://doi.org/10.1007/s00477-011-0462-z CrossRefGoogle Scholar
  15. Geurs KT, van Wee B (2004) Accessibility evaluation of land-use and transport strategies: review and research directions. J Transp Geogr 12(2):127–140.  https://doi.org/10.1016/j.jtrangeo.2003.10.005 CrossRefGoogle Scholar
  16. GISCA (2016) National Centre for Social Applications of GIS (GISCA). Hugo Centre for Migration and Population Research. http://www.adelaide.edu.au/apmrc/gisca/. Accessed 05 June 2018
  17. Glover J, Tennant S (2003) Remote areas statistical geography in Australia: notes on the Accessibility/remoteness index for Australia (ARIA+ version). Working Paper Series No. 9 Public Health Information Development Unit, AdelaideGoogle Scholar
  18. Hansen WG (1959) How accessibility shapes land use. J Am Inst Plan 25(2):73–76.  https://doi.org/10.1080/01944365908978307 CrossRefGoogle Scholar
  19. ICNF (2018) Informação Geográfica. Instituto da Conservação da Natureza e das Florestas. http://www2.icnf.pt/portal/florestas/dfci/inc/info-geo. Accessed 20 June 2018
  20. Keller S, Atzl A (2014) Mapping natural hazard impacts on road infrastructure—The extreme precipitation in Baden-Württemberg, Germany, June 2013. Int J Disaster Risk Sci 5(3):227–241.  https://doi.org/10.1007/s13753-014-0026-1 CrossRefGoogle Scholar
  21. Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A (2012) An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci 67(1):251–264.  https://doi.org/10.1007/s12665-011-1504-z CrossRefGoogle Scholar
  22. Kröger W (2008) Critical infrastructures at risk: a need for a new conceptual approach and extended analytical tools. Reliab Eng Syst Saf 93(12):1781–1787.  https://doi.org/10.1016/j.ress.2008.03.005 CrossRefGoogle Scholar
  23. Kröger W, Zio E (2011) Vulnerable systems. Springer, LondonGoogle Scholar
  24. Lu QC, Peng ZR (2011) Vulnerability analysis of transportation network under scenarios of sea level rise. Transp Res Rec J Transp Res Board 2263:174–181.  https://doi.org/10.3141/2263-19 CrossRefGoogle Scholar
  25. Luathep P, Sumalee A, Ho HW, Kurauchi F (2011) Large-scale road network vulnerability analysis: a sensitivity analysis based approach. Transportation 38(5):799–817.  https://doi.org/10.1007/s11116-011-9350-0 CrossRefGoogle Scholar
  26. Ludwig I, Voss A, Krause-Traudes M (2011) A comparison of the street networks of Navteq and OSM in Germany. In: Advancing geoinformation science for a changing world. Springer, Berlin, Heidelberg, pp 65–84Google Scholar
  27. Mitsakis E, Stamos I, Papanikolaou A, Aifadopoulou G, Kontoes H (2014) Assessment of extreme weather events on transport networks: case study of the 2007 wildfires in Peloponnesus. Nat Hazards 72(1):87–107.  https://doi.org/10.1007/s11069-013-0896-3 CrossRefGoogle Scholar
  28. Mojtahedi M, Newton S, Von Meding J (2017) Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model. Natural Hazards 85(2):1119–1133.  https://doi.org/10.1007/s11069-016-2624-2 CrossRefGoogle Scholar
  29. Mozumder P, Raheem N, Talberth J, Berrens RP (2008) Investigating intended evacuation from wildfires in the wildland–urban interface: application of a bivariate probit model. For Policy Econ 10(6):415–423.  https://doi.org/10.1016/j.forpol.2008.02.002 CrossRefGoogle Scholar
  30. Murawski L, Church RL (2009) Improving accessibility to rural health services: the maximal covering network improvement problem. Soc Econ Plann Sci 43(2):102–110.  https://doi.org/10.1016/j.seps.2008.02.012 CrossRefGoogle Scholar
  31. Muriel-Villegas JE, Alvarez-Uribe KC, Patiño-Rodríguez CE, Villegas JG (2016) Analysis of transportation networks subject to natural hazards—insights from a Colombian case. Reliab Eng Syst Saf 152:151–165.  https://doi.org/10.1016/j.ress.2016.03.006 CrossRefGoogle Scholar
  32. Neis P, Zielstra D (2014) Recent developments and future trends in volunteered geographic information research: the case of openstreetmap. Future Internet 6(1):76–106.  https://doi.org/10.3390/fi6010076 CrossRefGoogle Scholar
  33. Niemeier DA (1997) Accessibility: an evaluation using consumer welfare. Transportation 24(4):377–396.  https://doi.org/10.1023/A:1004914803019 CrossRefGoogle Scholar
  34. Novak DC, Sullivan JL (2014) A link-focused methodology for evaluating accessibility to emergency services. Decis Support Syst 57:309–319.  https://doi.org/10.1016/j.dss.2013.09.015 CrossRefGoogle Scholar
  35. OSM Contributors (2017) OpenStreetMap. https://www.openstreetmap.org. Accessed 03 Mar 2018
  36. Petrucci O (2012) The impact of natural disasters: simplified procedures and open problems. In: Tiefenbacher J (ed) Approaches to managing disaster. IntechOpen, Rijeka, pp 109–133Google Scholar
  37. Phippen JW (2017) A Deadly Forest Fire in Portugal. https://www.theatlantic.com/news/archive/2017/06/forest-fire-portugal/530745/. Accessed 24 June 2018
  38. Santos BF, Antunes AP, Miller EJ (2010) Interurban road network planning model with accessibility and robustness objectives. Transp Plan Technol 33(3):297–313.  https://doi.org/10.1080/03081061003732375 CrossRefGoogle Scholar
  39. Schäfer AM, Wenzel F (2017) TsuPy: computational robustness in Tsunami hazard modelling. Comput Geosci 102:148–157.  https://doi.org/10.1016/j.cageo.2017.02.016 CrossRefGoogle Scholar
  40. Sohn J (2006) Evaluating the significance of highway network links under the flood damage: an accessibility approach. Transp Res Part A Policy Pract 40(6):491–506.  https://doi.org/10.1016/j.tra.2005.08.006 CrossRefGoogle Scholar
  41. Taylor MA, Susilawati (2012) Remoteness and accessibility in the vulnerability analysis of regional road networks. Transp Res Part A Policy Pract 46(5):761–771.  https://doi.org/10.1016/j.tra.2012.02.008 CrossRefGoogle Scholar
  42. UNS (2017) Chile: Incendios forestales - enero 2017. Reporte de Situaciòn No. 02 (al 07 de febrero de 2017). United Nations System. https://reliefweb.int/report/chile/chile-forest-fires-january-2017-situation-report-no-01-31-january-2017. Accessed 26 June 2018
  43. Weiss DJ, Nelson A, Gibson HS, Temperley W, Peedell S, Lieber A, Hancher M, Poyart E, Belchior S, Fullman N, Mappin B, Dalrymple U, Rozier J, Lucas TCD, Howes RE, Tusting LS, Kang SY, Cameron E, Bisanzio D, Battle KE, Bhatt S, Gething PW (2018) A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553(7688):333.  https://doi.org/10.1038/nature25181 CrossRefGoogle Scholar
  44. Zio E (2016) Challenges in the vulnerability and risk analysis of critical infrastructures. Reliab Eng Syst Saf 152:137–150.  https://doi.org/10.1016/j.ress.2016.02.009 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Photogrammetry and Remote SensingKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute of Regional ScienceKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations