Advertisement

Natural Hazards

, Volume 97, Issue 2, pp 455–475 | Cite as

Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework

  • Lin Lin
  • Zening WuEmail author
  • Qiuhua Liang
Original Paper
  • 215 Downloads

Abstract

Pluvial flooding is a common type of natural hazard caused by rainfall events with high intensity and short duration, which may lead to substantial property damages, transportation interruptions, and casualties. Modern cities are susceptible to pluvial flooding due to dense population and advanced economic development. To facilitate the development of better flood control and risk mitigation strategies, this study presents a new quantitative flood susceptibility analysis framework to estimate the potential flood extents and scale. The framework is based on the multi-criteria decision-making methods within a platform of the geographic information system (GIS). A composite urban flood risk index (FRI) is derived from various flood conditioning factors. The FRI consists of flood vulnerability index, hazard factors, and resilience capacity indicators. The flood-susceptible map is generated using the GIS spatial analysis tools and the analytic hierarchy process method. Zhengzhou city, China, is selected as the case study area. The result map shows that the highly susceptible areas are mainly located in Jinshui District, accounting for 64% of the total area of the risk zone. To further validate this framework, a flood inventory map is produced by mapping 74 test locations identified through survey data in this area, followed by plotting a receiver operating characteristic (ROC) curve. The ROC shows an area under the curve of 74.27%, which validates the proposed framework. Compared with other methods, the proposed framework is particularly suitable for application in data-scarce cases.

Keywords

Susceptibility MCDM GIS AHP 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51739009). The first author thanks the China Scholarship Council for providing funding to support her 1-year study at Newcastle University, UK. The authors thank relevant government departments and colleagues for providing meteorological and hydrological data. We also thank reviewers for their insightful comments that have helped improve this manuscript.

References

  1. Abebe Y, Kabir G, Tesfamariam S (2018) Assessing urban areas vulnerability to pluvial flooding using gis applications and bayesian belief network model. J Clean Prod 174:1629–1641.  https://doi.org/10.1016/j.jclepro.2017.11.066. http://www.sciencedirect.com/science/article/pii/S0959652617327245
  2. Abuzied S, Yuan M, Ibrahim S, Kaiser M, Saleem T (2016) Geospatial risk assessment of flash floods in Nuweiba area, Egypt. J Arid Environ 133:54–72.  https://doi.org/10.1016/j.jaridenv.2016.06.004. http://www.sciencedirect.com/science/article/pii/S0140196316301057
  3. Arrighi C, Rossi L, Trasforini E, Rudari R, Ferraris L, Brugioni M, Franceschini S, Castelli F (2018) Quantification of flood risk mitigation benefits: a building-scale damage assessment through the rasor platform. J Environ Manag 207:92–104.  https://doi.org/10.1016/j.jenvman.2017.11.017. http://www.sciencedirect.com/science/article/pii/S0301479717310927
  4. Beltramone G, Alaniz E, Ferral AE, Aleksink A, Arijn DR, Bernasconi I, Germn A, Ferral A (2017) Risk mapping of urban areas prone to flash floods in mountain basins using the analytic hierarchy process and geographical information systems. In: 2017 XVII Workshop on information processing and control (RPIC), pp 1–6.  https://doi.org/10.23919/RPIC.2017.8214379. https://ieeexplore.ieee.org/ielx7/8169970/8211611/08214379.pdf?tp=&arnumber=8214379&isnumber=8211611
  5. Birgani YT, Yazdandoost F (2018) An integrated framework to evaluate resilient-sustainable urban drainage management plans using a combined-adaptive mcdm technique. Water Resour Manag 32(8):2817–2835CrossRefGoogle Scholar
  6. Cetinkaya C, zceylan E, Erba M, Kabak M (2016) Gis-based fuzzy mcda approach for siting refugee camp: a case study for southeastern Turkey. Int J Disaster Risk Reduct 18:218–231CrossRefGoogle Scholar
  7. Chen YR, Yeh CH, Yu B (2011) Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in taiwan. Nat Hazards 59(3):1261–1276.  https://doi.org/10.1007/s11069-011-9831-7 CrossRefGoogle Scholar
  8. Chen H, Ito Y, Sawamukai M, Tokunaga T (2015a) Flood hazard assessment in the kujukuri plain of chiba prefecture, japan, based on gis and multicriteria decision analysis. Nat Hazards 78(1):105–120.  https://doi.org/10.1007/s11069-015-1699-5. https://link.springer.com/content/pdf/10.1007%2Fs11069-015-1699-5.pdf
  9. Chen Y, Liu R, Barrett D, Gao L, Zhou M, Renzullo L, Emelyanova I (2015b) A spatial assessment framework for evaluating flood risk under extreme climates. Sci Total Environ 538:512–523.  https://doi.org/10.1016/j.scitotenv.2015.08.094. http://www.sciencedirect.com/science/article/pii/S0048969715305957
  10. Dawson RJ, Peppe R, Wang M (2011) An agent-based model for risk-based flood incident management. Nat Hazards 59(1):167–189CrossRefGoogle Scholar
  11. Dhiman R, Kalbar P, Inamdar AB (2018) Gis coupled multiple criteria decision making approach for classifying urban coastal areas in india. Habitat Int 71:125–134.  https://doi.org/10.1016/j.habitatint.2017.12.002. http://www.sciencedirect.com/science/article/pii/S0197397517309785
  12. Dongdong Z, DenghHa Y, Yicheng W (2014) Research progress oil risk assessment and integrated strategies for urban pluvial flooding. J Catastrophol 29(1):144–149Google Scholar
  13. Dottori F, Martina M, Figueiredo R (2018) A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios. J Flood Risk Manag 11(S2):S632–S645,  https://doi.org/10.1111/jfr3.12234https://onlinelibrary.wiley.com/doi/abs/10.1111/jfr3.12234
  14. Ebrahimian Ghajari Y, Alesheikh AA, Modiri M, Hosnavi R, Abbasi M, Sharifi A (2018) Urban vulnerability under various blast loading scenarios: analysis using gis-based multi-criteria decision analysis techniques. Cities 72:102–114.  https://doi.org/10.1016/j.cities.2017.08.006. http://www.sciencedirect.com/science/article/pii/S0264275117300045
  15. Elkhrachy I (2015a) Flash flood hazard mapping using satellite images and gis tools: a case study of najran city, kingdom of saudi arabia (ksa). Egypt J Remote Sens Space Sci 18(2):261–278.  https://doi.org/10.1016/j.ejrs.2015.06.007. http://www.sciencedirect.com/science/article/pii/S1110982315000307
  16. Elkhrachy I (2015b) Flash flood hazard mapping using satellite images and gis tools: A case study of najran city, kingdom of saudi arabia (ksa). The Egyptian Journal of Remote Sensing and Space Science 18(2):261–278.  https://doi.org/10.1016/j.ejrs.2015.06.007. http://www.sciencedirect.com/science/article/pii/S1110982315000307
  17. Elsheikh RFA, Ouerghi S, Elhag AR (2015) Flood risk map based on gis, and multi criteria techniques (case study terengganu malaysia). J Geogr Inf Syst 7(04):348–357Google Scholar
  18. Fatemi F, Ardalan A, Aguirre B, Mansouri N, Mohammadfam I (2017) Social vulnerability indicators in disasters: findings from a systematic review. Int J Disaster Risk Reduct 22:219–227.  https://doi.org/10.1016/j.ijdrr.2016.09.006. http://www.sciencedirect.com/science/article/pii/S2212420916302746
  19. Fernndez D, Lutz M (2010) Urban flood hazard zoning in tucumn province, argentina, using gis and multicriteria decision analysis. Eng Geol 111(1–4):90–98CrossRefGoogle Scholar
  20. Gigovi L, Pamuar D, Baji Z, Drobnjak S (2017) Application of gis-interval rough ahp methodology for flood hazard mapping in urban areas. Water 9(6):360. http://www.mdpi.com/2073-4441/9/6/360
  21. Haghizadeh A, Siahkamari S, Haghiabi AH, Rahmati O (2017) Forecasting flood-prone areas using shannons entropy model. J Earth Syst Sci 126(3):39.  https://doi.org/10.1007/s12040-017-0819-x CrossRefGoogle Scholar
  22. Hammond MJ, Chen AS, Djordjevi S, Butler D, Mark O (2015) Urban flood impact assessment: a state-of-the-art review. Urban Water J 12(1):14–29.  https://doi.org/10.1080/1573062X.2013.857421 CrossRefGoogle Scholar
  23. Jacek M (2011) Local weighted linear combination. Trans GIS 15(4):439–455.  https://doi.org/10.1111/j.1467-9671.2011.01275.x CrossRefGoogle Scholar
  24. Kazakis N, Kougias I, Patsialis T (2015) Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in rhodopeevros region, greece. Sci Total Environ 538:555–563.  https://doi.org/10.1016/j.scitotenv.2015.08.055. http://www.sciencedirect.com/science/article/pii/S0048969715305581
  25. Lee MJ, Kang J, Jeon S (2012) Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using gis. In: 2012 IEEE international geoscience and remote sensing symposium (IGARSS), IEEE, pp 895–898Google Scholar
  26. Liang Q, Xia X, Hou J (2016) Catchment-scale high-resolution flash flood simulation using the gpu-based technology. Procedia Eng 154:975–981.  https://doi.org/10.1016/j.proeng.2016.07.585. http://www.sciencedirect.com/science/article/pii/S1877705816319749
  27. Lin L, Hu C, Wu Z (2016) Assessment of flood hazard based on underlying surface change by using gis and analytic hierarchy process. In: International conference on geo-informatics in resource management and sustainable ecosystems, Springer, pp 589–599Google Scholar
  28. Lyu HM, Sun WJ, Shen SL, Arulrajah A (2018) Flood risk assessment in metro systems of mega-cities using a gis-based modeling approach. Sci Total Environ 626:1012–1025.  https://doi.org/10.1016/j.scitotenv.2018.01.138. http://www.sciencedirect.com/science/article/pii/S0048969718301608
  29. Madruga de Brito M, Evers M (2018) Incorporating stakeholders’knowledge into flood vulnerability assessment: a multi-criteria approach. In: EGU general assembly conference abstracts, vol 20, p 749Google Scholar
  30. Malczewski J (2006) Gis-based multicriteria decision analysis: a survey of the literature. Int. J Geogr. Inf Sci 20(7):703–726CrossRefGoogle Scholar
  31. Manfreda S, Nardi F, Samela C, Grimaldi S, Taramasso AC, Roth G, Sole A (2014) Investigation on the use of geomorphic approaches for the delineation of flood prone areas. J Hydrol 517:863–876CrossRefGoogle Scholar
  32. Manfreda S, Samela C, Gioia A, Consoli GG, Iacobellis V, Giuzio L, Cantisani A, Sole A (2015) Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1d and 2d hydraulic models. Nat Hazards 79(2):735–754CrossRefGoogle Scholar
  33. Miller JD, Hutchins M (2017) The impacts of urbanisation and climate change on urban flooding and urban water quality: a review of the evidence concerning the united kingdom. J Hydrol Reg Stud 12:345–362.  https://doi.org/10.1016/j.ejrh.2017.06.006. http://www.sciencedirect.com/science/article/pii/S2214581817300435
  34. Mller A, Reiter J, Weiland U (2011) Assessment of urban vulnerability towards floods using an indicator-based approach a case study for santiago de chile. Nat Hazards Earth Syst Sci 11(8):2107–2123.  https://doi.org/10.5194/nhess-11-2107-2011. https://www.nat-hazards-earth-syst-sci.net/11/2107/2011/. https://www.nat-hazards-earth-syst-sci.net/11/2107/2011/nhess-11-2107-2011.pdf
  35. Nott J (2006) Extreme events: a physical reconstruction and risk assessment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Ogie RI, Holderness T, Dunn S, Turpin E (2018) Assessing the vulnerability of hydrological infrastructure to flood damage in coastal cities of developing nations. Comput Environ Urban Syst 68:97–109CrossRefGoogle Scholar
  37. Oikonomidis D, Dimogianni S, Kazakis N, Voudouris K (2015) A gis/remote sensing-based methodology for groundwater potentiality assessment in tirnavos area, greece. J Hydrol 525:197–208CrossRefGoogle Scholar
  38. Olden J, xa D, Lawler J, Poff N, Xa D, xa L (2008) Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83(2):171–193.  https://doi.org/10.1086/587826 CrossRefGoogle Scholar
  39. Ouma Y, Tateishi R (2014) Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water 6(6):1515–1545. http://www.mdpi.com/2073-4441/6/6/1515
  40. Pacheco FAL, Sanches Fernandes LF (2013) The multivariate statistical structure of drastic model. J Hydrol 476:442–459.  https://doi.org/10.1016/j.jhydrol.2012.11.020. http://www.sciencedirect.com/science/article/pii/S0022169412009845
  41. Papaioannou G, Vasiliades L, Loukas A (2015) Multi-criteria analysis framework for potential flood prone areas mapping. Water Resour Manag 29(2):399–418.  https://doi.org/10.1007/s11269-014-0817-6 CrossRefGoogle Scholar
  42. Pradhan B (2010) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spat Hydrol 9(2):1–18Google Scholar
  43. Pradhan B, Hagemann U, Tehrany MS, Prechtel N (2014) An easy to use arcmap based texture analysis program for extraction of flooded areas from terrasar-x satellite image. Comput Geosci 63:34–43CrossRefGoogle Scholar
  44. Quan RS, Liu M, Lu M, Zhang LJ, Wang JJ, Xu SY (2010) Waterlogging risk assessment based on land use/cover change: a case study in pudong new area, shanghai. Environ Earth Sci 61(6):1113–1121.  https://doi.org/10.1007/s12665-009-0431-8 CrossRefGoogle Scholar
  45. Rahmati O, Pourghasemi HR (2017) Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models. Water Resour Manag 31(5):1473–1487.  https://doi.org/10.1007/s11269-017-1589-6 CrossRefGoogle Scholar
  46. Rahmati O, Haghizadeh A, Stefanidis S (2016a) Assessing the accuracy of gis-based analytical hierarchy process for watershed prioritization; gorganrood river basin, iran. Water Resour Manag 30(3):1131–1150CrossRefGoogle Scholar
  47. Rahmati O, Pourghasemi HR, Zeinivand H (2016b) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int 31(1):42–70CrossRefGoogle Scholar
  48. Rahmati O, Zeinivand H, Besharat M (2016c) Flood hazard zoning in Yasooj region, Iran, using gis and multi-criteria decision analysis. Geomat Nat Hazards Risk 7(3):1000–1017.  https://doi.org/10.1080/19475705.2015.1045043 CrossRefGoogle Scholar
  49. Razavi Termeh SV, Kornejady A, Pourghasemi HR, Keesstra S (2018) Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ 615:438–451.  https://doi.org/10.1016/j.scitotenv.2017.09.262 CrossRefGoogle Scholar
  50. Rus K, Kilar V, Koren D (2018) Resilience assessment of complex urban systems to natural disasters: a new literature review. Int J Disaster Risk Reduct 31:311–330.  https://doi.org/10.1016/j.ijdrr.2018.05.015. http://www.sciencedirect.com/science/article/pii/S2212420918300360
  51. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98Google Scholar
  52. Sabzi HZ, Humberson D, Abudu S, King JP (2016) Optimization of adaptive fuzzy logic controller using novel combined evolutionary algorithms, and its application in Diez Lagos flood controlling system, southern new Mexico. Expert Syst Appl 43:154–164CrossRefGoogle Scholar
  53. Sadeghi-Pouya A, Nouri J, Mansouri N, Kia-Lashaki A (2017) An indexing approach to assess flood vulnerability in the western coastal cities of Mazandaran, Iran. Int J Disaster Risk Reduct 22:304–316.  https://doi.org/10.1016/j.ijdrr.2017.02.013. http://www.sciencedirect.com/science/article/pii/S2212420916306288
  54. Sakieh Y (2017) Understanding the effect of spatial patterns on the vulnerability of urban areas to flooding. Int J Disaster Risk Reduct 25:125–136.  https://doi.org/10.1016/j.ijdrr.2017.09.004. http://www.sciencedirect.com/science/article/pii/S221242091730095X
  55. Salleh S, Rahman AAA, Othman A, Mohd WNW (2018) Comparative study of landslides susceptibility mapping methods: multi-criteria decision making (mcdm) and artificial neural network (ann). In: IOP conference series: earth and environmental science, IOP Publishing, vol 117, p 012035Google Scholar
  56. Santos LBL, Carvalho T, Anderson LO, Rudorff CM, Marchezini V, Londe LR, Saito SM (2017) An rs-gis-based comprehensive impact assessment of floods & x2014;a case study in Madeira river, Western Brazilian Amazon. IEEE Geosci Remote Sens Lett 14(9):1614–1617.  https://doi.org/10.1109/LGRS.2017.2726524 CrossRefGoogle Scholar
  57. Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O (2018) Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int 33(9):927–941.  https://doi.org/10.1080/10106049.2017.1316780 CrossRefGoogle Scholar
  58. Stefanidis S, Stathis D (2013) Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (ahp). Nat Hazards 68(2):569–585CrossRefGoogle Scholar
  59. Subramanian N, Ramanathan R (2012) A review of applications of analytic hierarchy process in operations management. Int J Prod Econ 138(2):215–241CrossRefGoogle Scholar
  60. Tanavud C, Yongchalermchai C, Bennui A, Densreeserekul O (2004) Assessment of flood risk in hat Yai municipality, Southern Thailand, using GIS. J Nat Disaster Sci 26(1):1–14.  https://doi.org/10.2328/jnds.26.1 CrossRefGoogle Scholar
  61. Tang X, Shu Y, Lian Y, Zhao Y, Fu Y (2018) A spatial assessment of urban waterlogging risk based on a weighted nave bayes classifier. Sci Total Environ 630:264–274.  https://doi.org/10.1016/j.scitotenv.2018.02.172. http://www.sciencedirect.com/science/article/pii/S0048969718305655
  62. Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (dt) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79,  https://doi.org/10.1016/j.jhydrol.2013.09.034. http://www.sciencedirect.com/science/article/pii/S0022169413006872
  63. Tehrany MS, Pradhan B, Jebur MN (2014) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 12:332–343.  https://doi.org/10.1016/j.jhydrol.2014.03.008. http://www.sciencedirect.com/science/article/pii/S0022169414001826
  64. Tehrany MS, Pradhan B, Jebur MN (2015a) Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Environ Res Risk Assess 29(4):1149–1165CrossRefGoogle Scholar
  65. Tehrany MS, Pradhan B, Mansor S, Ahmad N (2015b) Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA 125:91–101.  https://doi.org/10.1016/j.catena.2014.10.017. http://www.sciencedirect.com/science/article/pii/S034181621400294X
  66. Wang Y, Li Z, Tang Z, Zeng G (2011) A gis-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resour Manag 25(13):3465–3484CrossRefGoogle Scholar
  67. Weerasinghe KM, Gehrels H, Arambepola NMSI, Vajja HP, Herath JMK, Atapattu KB (2018) Qualitative flood risk assessment for the western province of Sri Lanka. Procedia Engineering 212:503–510.  https://doi.org/10.1016/j.proeng.2018.01.065. http://www.sciencedirect.com/science/article/pii/S1877705818300833
  68. Xiao Y, Yi S, Tang Z (2017) Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Sci Total Environ 599–600:1034–1046.  https://doi.org/10.1016/j.scitotenv.2017.04.218. http://www.sciencedirect.com/science/article/pii/S0048969717310690
  69. Youssef A, Pradhan B, Gaber A, Buchroithner M (2009) Geomorphological hazard analysis along the Egyptian Red Sea Coast between Safaga and Quseir. Nat Hazards Earth Syst Sci 9(3):751–766CrossRefGoogle Scholar
  70. Zhang M (2008) Research on the assessment of disaster carrying capability and disaster comprehensive risk in urban place. Dalian University of Technology, DalianGoogle Scholar
  71. Zou Q, Zhou J, Zhou C, Song L, Guo J (2013) Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy ahp. Stoch Environ Res Risk Assess 27(2):525–546.  https://doi.org/10.1007/s00477-012-0598-5 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Water Conservancy and EnvironmentZhengzhou UniversityZhengzhouChina
  2. 2.School of Architecture, Building and Civil EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations