Effect of climatic oscillations on flood occurrence on Papaloapan River, México, during the 1550–2000 period

Abstract

This study presents a chronology of historical and measured flood events in the Papaloapan River basin of Mexico during 450 years. Twenty-eight historical floods were recorded during the period 1550–1948 on this river and one flood event (1969) in the instrumental era (1949–2000), of which 14 were extraordinary floods and only 15 were catastrophic ones. There were several flood-rich decades during 1860–1870, 1880–1890, 1920–1930 and 1940–1950. Wavelet analysis found a significant flooding periodicity of 58 years. The wavelet coherence analysis found that flooding had an in-phase relationship with the Atlantic Multidecadal Oscillation and also with the Pacific Decadal Oscillation. Logistic regression corroborated that there exists a positive relationship between floods events and these two natural climatic oscillations. The logistic regression model predicted correctly 92% of flood events.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Barriendos M, Vide JM (1998) Secular climatic oscillations as indicated by catastrophic floods in the Spanish Mediterranean coastal area (fourteenth–nineteenth centuries). Clim Change 38:473–491. https://doi.org/10.1023/A:1005343828552

    Article  Google Scholar 

  2. Barriendos M, Coeur D, Lang M, Llasat MC, Naulet R, Lemaitre F, Barrera A (2003) Stationarity analysis of historical flood in France and Spain (fourteenth–twentieth centuries). Nat Hazards Earth Syst Sci 3:583–592. https://doi.org/10.5194/nhess-3-583-2003

    Article  Google Scholar 

  3. Bera K, Bilias Y (2001) Rao. J Stat Plan Inference 97:944. https://doi.org/10.1016/S0378-3758(00)00343-8

    Article  Google Scholar 

  4. Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since AD 1661. J. Climate 14:5–10

    Article  Google Scholar 

  5. Brant R (1996) Digesting logistic regression results. Am Stat 50:117–119

    Google Scholar 

  6. Brázdil R, Zbigniew W, Kundzewicz W, Benito G (2006) Historical hydrology for studying flood risk in Europe. Hydrol Sci J 51:739–764. https://doi.org/10.1623/hysj.51.5.739

    Article  Google Scholar 

  7. Corro O (1951) El cantón de Cosamaloapan: noticias de geografía e historia. La impresora, Veracruz (in spanish)

    Google Scholar 

  8. Cruickshank G (1972) Some problems of the Papaloapan river basin. In: Proceedings of university seminar on pollution and water resources Columbia University. http://www.state.nj.us/dep/njgs/enviroed/oldpubs/bulletin72d.pdf. Accessed 28 July 2017

  9. De Luna-Cruz F, Domínguez-Mora R, Arganis-Juarez M, Carrizosa-Elizondo E (2016) Factor de reducción por simultaneidad en avenidas de diseño por dos descargas a un tramo de río. Memorias de la Décima Quinta Conferencia Iberoamericana en Sistemas, Cibernética e Informática (CISCI 2016). http://www.iiis.org/Proceedings2016b.asp?seasson=summer. Accessed 12 July 2017

  10. Díaz-Gallegos JR, Mas JF, Velázquez A (2010) Trends of tropical deforestation in Southeast Mexico. Singap J Trop Geogr 31:180–196. https://doi.org/10.1111/j.1467-9493.2010.00396.x

    Article  Google Scholar 

  11. Escobar A (2004) Desastres agrícolas en México catálogo histórico Tomo II. FCE-CIESAS, México City (in Spanish)

    Google Scholar 

  12. García V, Perez JM, Molina A (2004) Desastres agrícolas en México catálogo histórico Tomo I. FCE-CIESAS, México City (in Spanish)

    Google Scholar 

  13. Goldenberg SB, Landsea CW, Mestas-Nunez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  Google Scholar 

  14. Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys Res Lett 31:L12205. https://doi.org/10.1029/2004GL019932

    Article  Google Scholar 

  15. Grinsted A, Moore J, Jevrejera S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566. https://doi.org/10.5194/npg-11-561-2004

    Article  Google Scholar 

  16. Hall J, Arheimer B, Borga M, Brázdil R, Claps P, Kiss A, Kjeldsen TR, Kriaučiūnienė J, Kundzewicz ZW, Lang M, Llasat MC, Macdonald N, McIntyre N, Mediero L, Merz B, Merz R, Molnar P, Montanari A, Neuhold C, Parajka J, Perdigão RAP, Plavcová L, Rogger M, Salinas JL, Sauquet E, Schär C, Szolgay J, Viglione A, Blöschl G (2014) Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol Earth Syst Sci 18:2735–2772. https://doi.org/10.5194/hess-18-2735-2014

    Article  Google Scholar 

  17. Hosmer DW, Lemeshow S (2013) Applied logistic regression. Wiley, New York

    Google Scholar 

  18. IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  19. Lang M, Ouarda T, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225:103–117. https://doi.org/10.1016/S0022-1694(99)00167-5

    Article  Google Scholar 

  20. Lozano-García M, Caballero M, Ortega B, Rodríguez A, Sosa S (2007) Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica. PNAS 104:16200–16203. https://doi.org/10.1073/pnas.0707896104

    Article  Google Scholar 

  21. Madsen H, Lawrence D, Lang M, Martinkova M, Kjeldsen T (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519:3634–3650. https://doi.org/10.1016/j.jhydrol.2014.11.003

    Article  Google Scholar 

  22. Mendez M, Magaña V (2010) Regional aspects of prolonged meteorological droughts over Mexico and Central America. J Clim 23:1175–1188. https://doi.org/10.1175/2009JCLI3080.1

    Article  Google Scholar 

  23. Mendoza B, García-Acosta V, Velasco V, Jáuregui E, Díaz-Sandoval R (2007) Frequency and duration of historical droughts from the sixteenth–nineteenth centuries in the Mexican Maya lands, Yucatan Peninsula. Clim Change 83:151–168. https://doi.org/10.1007/s10584-006-9232-1

    Article  Google Scholar 

  24. Naulet R, Lang M, Ouarda T, Coeur D (2005) Flood frequency analysis on the Ardèche River using French documentary sources from the last two centuries. J Hydrol 313:58–78

    Article  Google Scholar 

  25. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379

    Article  Google Scholar 

  26. Pérez A, Ortiz M (2002) Cambio de la cubierta vegetal y vulnerabilidad a la inundación en el curso bajo del río Papaloapan, Veracruz. Investigaciones Geográficas Boletín del Instituto de Geografía UNAM 48:90–105 (in spanish)

    Google Scholar 

  27. Retsö D (2015) Documentary evidence of historical floods and extreme rainfall events in Sweden 1400–1800. Hydrol Earth Syst Sci 19:1307–1323. https://doi.org/10.5194/hess-19-1307-2015

    Article  Google Scholar 

  28. Rovirosa JN (1946) Hidrografía del sureste de México y su relación con los vientos y la lluvia segunda edición. Gobierno Constitucional del Estado de Tabasco, Villahermosa (in spanish)

    Google Scholar 

  29. Ruiz-Barradas A (2011) Lluvias extremas en Veracruz y su relación con la variabilidad natural del clima. In: Martinez AT (ed) Inundaciones 2010 en el estado de Veracruz, 1st edn. Consejo Veracruzano de Investigación Científica y Desarrollo Tecnológico, Veracruz, pp 111–132 (in spanish)

    Google Scholar 

  30. Seager R, Ting M, Davis M, Cane MA, Naik N, Nakamura J, Li C, Cook E, Stahle DW (2009) Mexican drought: an observational, modeling and tree ring study of variability and climate change. Atmósfera 22:1–31

    Google Scholar 

  31. Shilong P, Friedlingstein P, Ciais P, Noblet-Ducoudré N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. PNAS 104:15242–15247. https://doi.org/10.1073/pnas.0707213104

    Article  Google Scholar 

  32. Stahle DW, D’Arrigo RD, Krusic PJ, Cleaveland MK, Cook ER, Allan RJ, Cole JE, Dunbar RB, Therrell MD, Gay DA, Moore MD, Stokes MA, Burns BT, Villanueva-Diaz J, Thompson LG (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 79:2137–2152

    Article  Google Scholar 

  33. Thiébaut V (2013) Paisaje e identidad: El río Papaloapan, elemento funcional y simbólico de los paisajes del Sotavento. LiminaR 11:82–99 (in spanish)

    Article  Google Scholar 

  34. Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  35. U.S. Corps of Engineers (2017) HEC-SSP User’s manual version 2.1. http://www.hec.usace.army.mil/software/hec-ssp/documentation.aspx. Accessed 12 July 2017

  36. Valdés-Manzanilla A (2016) Historical floods in Tabasco and Chiapas during sixteenth–twentieth centuries. Nat Hazards 80:1563–1577. https://doi.org/10.1007/s11069-015-2039-5

    Article  Google Scholar 

  37. Velasco-Herrera VM, Mendoza B, Velasco-Herrera G (2015) Reconstruction and prediction of the total solar irradiance: from the Medieval Warm Period to the twenty-first century. N Astron 34:221–233. https://doi.org/10.1016/j.newast.2014.07.009

    Article  Google Scholar 

  38. Wald A (1945) Sequential tests of statistical hypotheses. Ann Math Stat 16:117–186. https://doi.org/10.1214/aoms/1177731118

    Article  Google Scholar 

Download references

Acknowledgements

The author wants to thank Virginia Garcia, Antonio Escobar and Octaviano Corro (Ɨ), for their data used in this work, Aslak Grinsted for his software code to compute the wavelet analysis, and Fabien Lemaitre for his software code to compute the Lang’s test for homogeneity. Conflict of interest: none. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. I would like to thank the Universidad Juarez Autónoma de Tabasco for giving me the time dedicated to carry out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arturo Valdés-Manzanilla.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valdés-Manzanilla, A. Effect of climatic oscillations on flood occurrence on Papaloapan River, México, during the 1550–2000 period. Nat Hazards 94, 167–180 (2018). https://doi.org/10.1007/s11069-018-3379-8

Download citation

Keywords

  • Floods
  • Papaloapan River
  • Climatic decadal oscillations