Skip to main content
Log in

Determination of probabilities for the generation of high-discharge flows in the middle basin of Elqui River, Chile

Natural Hazards Aims and scope Submit manuscript

Abstract

The probabilities for the generation of hyperconcentrated flows, and debris and mud flows in the middle basin of Elqui River (Chile) are determined. The objective was achieved collecting, for a period of 14 years, the precipitation events generating high-discharge flows, as well as the larger precipitation events that did not generate this process. For each of these events, data of peak 1-h storm precipitation, temperature (representing the zero-isotherm altitude) and antecedent precipitation of 1, 5 and 10 days were collected from three meteorological stations. Initially, an ordinal logistic regression model for each antecedent precipitation was fitted, but all were discarded due to the low significance of these variables in the generation of the models. This result allowed to infer that the high-discharge flows of the region are generated mainly by runoff and not by deep-seated or shallow landslides. Subsequently, a new model with the remaining variables was performed, which was statistically validated. From this, it was considered prudent to take as thresholds for the occurrence of hyperconcentrated flows, and debris and mud flows, their respective probabilities of 50%. For these thresholds, the model had an efficiency in the prediction of high-discharge flows of 90%. Finally, the partial correlation coefficients of each significant predictor variable with respect to the dependent were calculated, establishing that the temperature has greater influence than the peak 1-h storm precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aguilar G, Riquelme R, Martinod J, Darrozes J (2013) Rol del clima y la tectónica en la evolución geomorfológica de los Andes Semiáridos chilenos entre los 27–32 °S. Andean Geology 40(1):79–101. https://doi.org/10.5027/andgeoV40n1-a04

    Article  Google Scholar 

  • Alaska Satellite Facility (2017) ALOS PALSAR radiometrically terrain-corrected. https://vertex.daac.asf.alaska.edu/. Accessed 17 July 2017

  • Antinao JL, Mcdonald E, Negrini R, Tiner R, Bobbit M, Kuehn S (2015) Nuevos antecedentes geocronológicos y estratigráficos en el Cuaternario del valle del Elqui, Chile. Dissertation, Chilean Geological Congress

  • Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Statist Surv 4:40–79. https://doi.org/10.1214/09-SS054

    Article  Google Scholar 

  • Berti M, Martina MLV, Franceschini S, Pignone S, Simoni A, Pizziolo M (2012) Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J Geophys Res Earth Surf 117(4):1–20. https://doi.org/10.1029/2012JF002367

    Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10(3):447–458. https://doi.org/10.5194/nhess-10-447-2010

    Article  Google Scholar 

  • Cannon SH, Gartner JE, Wilson RC, Bowers JC, Laber JL (2008) Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 96(3–4):250–269. https://doi.org/10.1016/j.geomorph.2007.03.019

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94(3–4):353–378. https://doi.org/10.1016/j.geomorph.2006.10.033

    Article  Google Scholar 

  • Carrasco JF, Osorio R, Casassa G (2008) Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J Glaciol 54(186):538–550. https://doi.org/10.3189/002214308785837002

    Article  Google Scholar 

  • CEAZA (2017) Red de estaciones meteorológicas del CEAZA. http://www.ceazamet.cl/. Accessed 17 July 2017

  • Coe JA, Kinner DA, Godt JW (2008) Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology 96(3–4):270–297. https://doi.org/10.1016/j.geomorph.2007.03.017

    Article  Google Scholar 

  • Conte Nadeau A (1986) Vulnerabilidad a los eventos naturales catastróficos de los Valles Elqui, Limari y Choapa. Revista Geográfica de Chile Terra Australis 29:103–130

    Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazard Earth Syst Sci 3(1–2):81–93

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nation (2006) Crop evapotranspiration. http://www.fao.org/docrep/X0490E/X0490E00.htm. Accessed 17 July 2017

  • Fuenzalida H (1982) A country of extreme climate. In: García H (ed) Chile: essence and evolution. Instituto de Estudios Regionales de la Universidad de Chile, Santiago de Chile, pp 27–35

    Google Scholar 

  • Garreaud R (1992) Estimación de la altura de la línea de nieve en cuencas de Chile central. Revista Chilena de Ingeniería Hidráulica 7:21–32

    Google Scholar 

  • Garreaud R (2013) Warm winter storms in Central Chile. J Hydrometeor 14:1515–1534. https://doi.org/10.1175/JHM-D-12-0135.1

    Article  Google Scholar 

  • Geophysics Department of the University of Chile (2006) Estudio de la variabilidad climática en Chile para el siglo XXI. Organización de estados Iberamericanos. http://www.oei.es/. Accessed 17 July 2017

  • Giannecchini R, Galanti Y, Amato GD, Barsanti M (2016) Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape. Geomorphology 257:94–107. https://doi.org/10.1016/j.geomorph.2015.12.012

    Article  Google Scholar 

  • Graña Pezoa F (2007) Crónicas y recuerdos de una inundación en el valle de Elqui. Comuna de Vicuña, Vicuña

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. https://doi.org/10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Hauser A (1985) Flujos de barro en la zona preandina de la Región Metropolitana: características, causas, efectos, riesgos y medidas preventivas. Revista Geológica de Chie 24:75–92

    Google Scholar 

  • Hosmer D, Lemeshow S (2000) Applied logistic regression. John Wiley & Sons Inc., New York

    Book  Google Scholar 

  • Hotchkiss RH, McCallum BE (1995) Peak discharge for small agricultural watersheds. J Hydraul Eng 121(1):36–48. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:1(36)

    Article  Google Scholar 

  • Hungr H (2005) Classification and terminology. In: Jakon M, Hungr H (eds) Defris-flow hazards and related phenomena. Springer, Chichester, pp 159–196

    Google Scholar 

  • Instituto Nacional de estadísticas (2017) Demográficas y vitales. http://www.ine.cl/estadisticas/demograficas-y-vitales. Accessed 17 July 2017

  • Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydromet 5(3):487–503. https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2

    Article  Google Scholar 

  • Kean JW, McCoy SW, Tucker GE, Staley DM, Coe JA (2013) Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency. J Geophys Res Earth Surf 118(4):2190–2207. https://doi.org/10.1002/jgrf.20148

    Article  Google Scholar 

  • Kleinbaum DG, Kupper LL, Muller KE (1988) Applied regression analysis and other multivariables methods. PWS-KENT Publishing Company, Duxbury

    Google Scholar 

  • Lauro C, Moreiras SM, Junquera S, Vergara I, Toural R, Wolf J, Tutzer R (2017) Summer rainstorm associated with a debris flow in the Amarilla gully affecting the international Agua Negra Pass (30°20′S), Argentina. Environ Earth Sci. https://doi.org/10.1007/s12665-017-6530-z

    Google Scholar 

  • Leroy SAG (2006) From natural hazard to environmental catastrophe: past and present. Quatern Int 158(1):4–12. https://doi.org/10.1016/j.quaint.2006.05.012

    Article  Google Scholar 

  • Maldonado A, De Porras ME (2015) Palinología de la zona andina del Norte Chico de Chile durante el Holoceno. Dissertation, Chilean Geological Congress

  • Marra F, Nikolopoulos EI, Creutin JD, Borga M (2014) Radar rainfall estimation for the identification of debris-flow occurrence thresholds. J Hydrol 519:1607–1619. https://doi.org/10.1016/j.jhydrol.2014.09.039

    Article  Google Scholar 

  • Moreiras SM (2005) Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza Province, ArgentinaArgentinaArgentinaArgentina. Landslides 2(1):53–59. https://doi.org/10.1007/s10346-005-0046-4

    Article  Google Scholar 

  • Ortlieb L, Vargas G (2015) Hacia una historia de eventos lluviosos extremos en el sur del Desierto de Atacama, Norte Chico, a partir de fuentes documentales. Dissertation, Chilean Geological Congress

  • Pavlova I, Jomelli V, Brunstein D, Grancher D, Martin E, Déqué M (2014) Debris flow activity related to recent climate conditions in the French Alps: a regional investigation. Geomorphology 219:248–259

    Article  Google Scholar 

  • Pérez C (2005) Cambio climático: vulnerabilidad, adaptación y rol institucional. Universidad de La Serena, La Serena, Estudios de caso en el valle de Elqui

    Google Scholar 

  • Pérez C, Cepeda J, Fiebig M, Pizarro J (2008) Desastres naturales y plagas en el valle del Río Elqui. In: Cepeda PJ (ed) Los sistemas naturales de la cuenca del río Elqui (Región de Coquimbo, Chile): Vulnerabilidad y cambio del clima. Ediciones Universidad de La Serena, La Serena, pp 295–333

    Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930. https://doi.org/10.1130/G33217.1

    Article  Google Scholar 

  • Pierson TC (2005) Hiperconcentrated flow—transitional process between water flow and debris flow. In: Jakob M, Hungr H (eds) Defris-flow hazards and related phenomena. Springer, Chichester, pp 159–196

    Chapter  Google Scholar 

  • Powers JG, Ahmadov R, Peckhamand SE et al (2017) The Weather Research and Forecasting Model: overview, system efforts, and future directions. Bull Am Meteor Soc 98(8):1717–1737. https://doi.org/10.1175/BAMS-D-15-00308.1

    Article  Google Scholar 

  • Prokhorov AV (2001) Partial correlation coefficient. In: Hazewinkel M (ed) Encyclopedia of Mathematics. Springer, New York

    Google Scholar 

  • Rauld Plott R, et al (2012) Zonificación Áreas de Riesgo Plan Regulador Intercomunal Provincia del Elqui, Región de Coquimbo. In: Ministerio de Vivienda y Urbanismo (ed) Plan regulador Intercomunal Provincia del Elqui. Gobierno de Elqui, La Serena, pp 1–139

  • Romero H, Rovira A, Véliz G (1988) Geografía IV Región de Coquimbo. Instituto Geográfico Militar, Santiago de Chile

    Google Scholar 

  • Rosenbluth B, Fuenzalida H, Aceituno P (1997) Recent temperature variations in Southern. Int J Climatol 17:67–85. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<67:AID-JOC120>3.0.CO;2-G

    Article  Google Scholar 

  • Rutllant J, Fuenzalida H (1991) Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. Int J Climatol 11:63–76

    Article  Google Scholar 

  • Santos JR, Norte F, Moreiras S, Araneo D, Simonelli S (2015) Predicción de episodios de precipitación que ocasionan aludes en el área montañosa del noroeste de la provincia de Mendoza. Argentina 40(1):65–75

    Google Scholar 

  • Sarricolea P, Herrera-Ossandon M, Meseguer-Ruiz Ó (2016) Climatic regionalisation of continental Chile. J Maps 5647:1–8. https://doi.org/10.1080/17445647.2016.1259592

    Google Scholar 

  • Seluchi M, Chou C (2001) Evaluation of two Eta Model versions for weather forecast over South America. Geofísica Internacional 40(3):219–237

    Google Scholar 

  • Sepúlveda SA, Padilla C (2008) Rain-induced debris and mudflow triggering factors assessment in the Santiago cordilleran foothills, Central Chile. Nat Hazards 47(2):201–215. https://doi.org/10.1007/s11069-007-9210-6

    Article  Google Scholar 

  • Sepúlveda SA, Rebolledo S, Vargas G (2006) Recent catastrophic debris flows in Chile: geological hazard, climatic relationships and human response. Quat Int 158(1):83–95. https://doi.org/10.1016/j.quaint.2006.05.031

    Article  Google Scholar 

  • Staley D, Negri J, Kean J, Laber J, Tillery A, Youberg A (2017) Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology 278:149–162. https://doi.org/10.1016/j.geomorph.2016.10.019

    Article  Google Scholar 

  • Vera C, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33(13):L13707. https://doi.org/10.1029/2006GL025759

    Article  Google Scholar 

  • Vuille M, Milana JP (2007) High-latitude forcing of regional aridification along the subtropical west coast of South America. Geophys Res Lett 34(23):1–6. https://doi.org/10.1029/2007GL031899

    Article  Google Scholar 

  • White AB, Gottas DJ, Henkel AF, Neiman PJ, Ralph FM, Gutman SI (2010) Developing a performance measure for snow-level forecasts. J Hydrometeor 11:739–753

    Article  Google Scholar 

  • Wilson RC, Wieczorek GF (1995) Rainfall thresholds for the initiation of debris flow at La Honda, California. Environ Eng Geosci 1(1):11–27

    Article  Google Scholar 

  • Zavala H, Trigos H (2008) Hidrología de la cuenca del Valle de Elqui. In: Cepeda PJ (ed) Los sistemas naturales de la cuenca del río Elqui (Región de Coquimbo, Chile): Vulnerabilidad y cambio del clima. Ediciones Universidad de La Serena, La Serena, pp 66–164

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Hazards of the Central Andes project from the National University of Cuyo. We are grateful to Simon Higginson for reviewing the English and to Mauricio Vergara for the critical review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván P. Vergara Dal Pont.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergara Dal Pont, I.P., Santibañez Ossa, F.A., Araneo, D. et al. Determination of probabilities for the generation of high-discharge flows in the middle basin of Elqui River, Chile. Nat Hazards 93, 531–546 (2018). https://doi.org/10.1007/s11069-018-3313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-018-3313-0

Keywords

Navigation