Skip to main content
Log in

Determination of seismic wave attenuation in Delhi, India, towards quantification of regional seismic hazard

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

National capital of India, Delhi is under moderate to high seismic hazard due to active regional faults such as the Mahendragarh fault, the Delhi Haridwar fault, the Sohna fault, the Delhi Meerut fault and the Rajasthan boundary fault. In addition, Delhi is also located within 200 km radial distance from Main Boundary Thrust and about 300 km distance from the Main Central Thrust which are active seismic sources in the Himalayan belt. Past studies clearly highlighted the seismic hazard potential and role of local soil for Delhi varying from moderate to very high. The present work manifests the attenuation characteristics of lithosphere up to a depth of 90 km beneath Delhi. These attenuation characteristics are obtained collectively based on the attenuation of P, S and coda wave spectrum from the recorded seismograms during nearby earthquakes (EQs) with focal depths (h) of around 10 km, in terms of the frequency (f)-dependent quality factors (Q). Based on the present analysis, obtained P, S and coda wave attenuations are found as \( (93 \pm 26)f^{(0.895 \pm 0.121)} \), \( (162 \pm 33)f^{(0.835 \pm 0.088)} \) and \( (116 \pm 16)f^{(1.029 \pm 0.061)} \), respectively, for Delhi. Seismic wave attenuation determined in this work will be very useful in seismic hazard estimation as well as for development of synthetic ground motion for Delhi for better preparedness during future EQs and thus minimising future EQ damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ASCII:

American Standard Code for Information Interchange

CNM:

Coda normalisation method

EQ:

Earthquake

MBT:

Main Boundary Thrust

MCT:

Main Central Thrust

N–S:

North–south

PESMOS:

Program for Excellence in Strong Motion Studies

RMS:

Root-mean-square

RMSE:

Root-mean-squared error

\( \eta \) :

Frequency-dependent numerical constant

\( \gamma \) :

Geometrical spreading factor

\( \varphi \) :

Incident angle of S wave

\( A_{c} \left( {f,t} \right) \) :

Amplitude of coda wave

\( A_{n} (f) \) :

Anelastic whole path attenuation factor

\( A_{p} \left( {f,r} \right) \) :

Amplitude of P wave

\( A_{s} \left( {f,r} \right) \) :

Amplitude of S wave

\( A_{x} \left( f \right) \) :

Fourier amplitude spectrum

\( b_{w} \) :

Bandwidth

\( C\left( f \right) \) :

Coda source factor

\( C_{w} \) :

Coda window length

f :

Frequency

\( f_{c} \) :

Central frequency

\( f_{\text{l}} \) :

Lower cut-off frequency

\( f_{u} \) :

Upper cut-off frequency

\( G \) :

Geometric attenuation factor

\( G_{i} \) :

Gain of filter

\( G\left( f \right) \) :

Site amplification factor for coda wave

\( G\left( {f,\varphi } \right) \) :

Site amplification factor for S wave

h :

Focal depth

\( I\left( f \right) \) :

Instrumental response

\( M_{w} \) :

Magnitude

\( n \) :

Filter order

\( P\left( f \right) \) :

Upper crust attenuation factor

\( P\left( {f,t} \right) \) :

Coda excitation factor

Q :

Quality factor

\( Q_{o} \) :

Quality factor at 1 Hz

\( Q_{c} \left( f \right) \) :

Quality factor for coda wave

\( Q_{c}^{ - 1} \) :

Coda wave attenuation

\( Q_{p} \left( f \right) \) :

Quality factor for P wave

\( Q_{p}^{ - 1} \) :

P wave attenuation

\( Q_{s} \left( f \right) \) :

Quality factor for S wave

\( Q_{s}^{ - 1} \) :

S wave attenuation

R :

Hypocentral distance

\( R_{\theta \varphi } \) :

Source radiation factor

\( R^{2} \) :

Coefficient of determination

\( S/N \) :

Signal-to-noise ratio

\( S\left( f \right) \) :

Source factor

\( S_{p} \left( f \right) \) :

Source spectral amplitude of P wave

\( S_{s} \left( f \right) \) :

Source spectral amplitude of S wave

\( S_{w} \) :

Sliding window length

\( t \) :

Lapse time

\( t_{p} \) :

P wave arrival time

\( t_{s} \) :

S wave arrival time

\( t_{w} \) :

Length of time window

\( V\left( f \right) \) :

Upper crust amplification factor

\( V_{p} \) :

Average P wave velocity

\( V_{s} \) :

Average S wave velocity

References

  • Abdel-Fattah AK (2009) Attenuation of body waves in the crust beneath the vicinity of Cairo Metropolitan area (Egypt) using coda normalization method. Geophys J Int 176:126–134

    Article  Google Scholar 

  • Aki K (1980a) Scattering and attenuation of shear waves in the lithosphere. J Geophys Res 85:6496–6504

    Article  Google Scholar 

  • Aki K (1980b) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet Inter 21:50–60

    Article  Google Scholar 

  • Aki K, Chouet B (1975) Origin of coda waves: source, attenuation, and scattering effects. J Geophys Res 80(23):3322–3342

    Article  Google Scholar 

  • Anbazhagan P, Kumar A, Sitharam TG (2013) Ground Motion Predictive Equation based on recorded and simulated Ground Motion Database. Soil Dynam Earthq Eng 53:92–108

    Article  Google Scholar 

  • Boore DM, Atkinson G (1987) Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in Eastern North America. Bull Seismol Soc Am 73:1865–1894

    Google Scholar 

  • Butterworth S (1930) On the theory of filter amplifiers. Exp Wirel Wirel Eng 7:536–541

    Google Scholar 

  • Castro R, Munguia L (1993) Attenuation of P and S waves in the Oaxaca,Mexico, subduction zone. Phys Earth Planet Inter 76:179–187

    Article  Google Scholar 

  • Chandler AM, Lam NT, Tsang HH (2006) Near-surface attenuation modelling based on rock shear-wave velocity profile. Soil Dyn Earthq Eng 26:1004–1014

    Article  Google Scholar 

  • Chopra S, Rastogi BK, Kumar D (2010) Attenuation of high frequency P and S waves in the Gujarat region, India. Pure Appl Geophys 168(5):797–813

    Article  Google Scholar 

  • Chung TW, Sato H (2001) Attenuation of high-frequency P and S waves in the crust of South-Eastern South Korea. Bull Seismol Soc Am 91(6):1867–1874

    Article  Google Scholar 

  • Electronics-Tutorial, Aspencore (2017). http://www.electronics-tutorials.ws/filter/filter_7.html. Accessed July 2017

  • Fedotov SA, Boldyrev SA (1969) Frequency dependence of the body wave absorption in the crust and the upper mantle of the Kuril-Island chain. Izv Acad Sci USSR Phys Solid Earth 9:17–33

    Google Scholar 

  • Gupta AK, Sutar AK, Chopra S, Kumar S, Rastogi BK (2012) Attenuation characteristics of coda waves in mainland Gujarat (India). Tectonophysics 530–531:264–271

    Article  Google Scholar 

  • Havskov J, Sørensen MB, Vales D, Özyazıcıoğlu M, Sánchez G, Li B (2016) Coda Q in different tectonic areas, influence of processing parameters. Bull Seismol Soc Am 106(3):1–15

    Article  Google Scholar 

  • Hellweg M, Spandich P, Fletcher JB, Baker LM (1995) Stability of Coda Q in the region of Parkfield, California: view from the U.S. geological survey Parkfield dense seismograph array. J Geophys Res 100:2089–2102

    Article  Google Scholar 

  • Iyenger RN, Ghosh S (2004) Microzonation of earthquake hazard in Greater Delhi area. Curr Sci 87(9):1193–1202

    Google Scholar 

  • Jin A, Aki K (1988) Spatial and temporal correlation between coda Q and seismicity in China. Bull Seismol Soc Am 78(2):741–769

    Google Scholar 

  • Johnston DH, Toksoz MN, Timur A (1979) Attenuation of seismic waves in dry and saturated rocks: I. Mechanisms. Geophysics 44:691–711

    Article  Google Scholar 

  • Kumar N, Parvez I, Virk H (2005) Estimation of coda wave attenuation for NW Himalayan region using local earthquakes. Phys Earth Planet Inter 151:243–258

    Article  Google Scholar 

  • Kumar A, Mittal H, Sachdeva R, Kumar A (2012) Indian strong motion instrumentation network. Seismol Res Lett 83(1):59–66

    Article  Google Scholar 

  • Kvamme LB, Havskov J (1989) Q in southern Norway. Bull Seismol Soc Am 79(5):1575–1588

    Google Scholar 

  • Lam NT, Wilson J, Hutchinson G (2000) Generation of synthetic earthquake accelerograms using seismological modelling: a Review. J Earthq Eng 4(3):321–354

    Google Scholar 

  • Mak S, Chan LS, Chandler AM, Koo RC (2004) Coda Q estimates in the Hong Kong region. J Asian Earth Sci 24:127–136

    Article  Google Scholar 

  • Malagnini L, Herrmann R, Di-Bona M (2000) Ground-motion scaling in the Apennines (Italy). Bull Seismol Soc Am 90(4):1062–1081

    Article  Google Scholar 

  • Mandal P, Rastogi BK (1998) A frequency dependent relation of coda Q for Koyna-Warna region, India. Pure Appl Geophys 153:163–177

    Article  Google Scholar 

  • Mochizuki S (1982) Attenuation in partially saturated rocks. J Geophys Res 87(B10):8598–8604

    Article  Google Scholar 

  • Mukhopadhyay S, Sharma J (2010) Attenuation characteristics of Garwhal-Kumaun Himalayas from analysis of coda of local earthquakes. J Seismol 14:693–713

    Article  Google Scholar 

  • Mukhopadhyay S, Tyagi C (2007) Lapse time and frequency-dependent attenuation characteristics of coda waves in the Northwestern Himalayas. J Seismol 11:149–158

    Article  Google Scholar 

  • Ottemoller L, Voss P, Havskov J (2015) Seisan earthquake analysis software manual. http://seisan.info. Accessed May 2016

  • Parvez IA, Yadav P, Nagaraj K (2012) Attenuation of P, S and coda waves in the NW-Himalayas, India. Int J Geosci 3:179–191

    Article  Google Scholar 

  • Pujades L, Canas J, Egozcue JJ, Puigvi MA, Pous J, Gallart J, Lana X, Casas A (1991) Coda Q distribution in the Iberian Peninsula. Geophys J Int 100:285–301

    Article  Google Scholar 

  • Pulli JJ (1984) Attenuation of coda waves in New England. Bull Seismol Soc Am 74(4):1149–1166

    Google Scholar 

  • Rautian TG, Khalturin VI (1978) The use of coda for determination of the earthquake source spectrum. Bull Seismol Soc Am 68:923–948

    Google Scholar 

  • Rautian T, Khalturin V, Martynov V, Molnar P (1978) Preliminary analysis of the spectral content of P and S waves from local earthquakes in the Garm, Tadjikistan region. Bull Seismol Soc Am 68:949–971

    Google Scholar 

  • Roecker SW, Tucker B, King J, Hartzfeld D (1982) Estimates of Q in Central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bull Seismol Soc Am 72:129–149

    Google Scholar 

  • Sharma B, Teotia SS, Kumar D (2007) Attenuation of P, S and coda waves in Koyna region, India. J Seismol 11(3):327–344

    Article  Google Scholar 

  • Sharma B, Teotia SS, Kumar D, Raju PS (2009) Attenuation of P and S-waves in the Chamoli region, Himalaya, India. Pure Appl Geophys 166(12):1949–1966

    Article  Google Scholar 

  • Sharma B, Chingtham P, Sutar AK, Chopra S, Shukla HP (2015) Frequency dependent attenuation of seismic waves for Delhi and surrounding area, India. Ann Geophys 58(2):S0216

    Google Scholar 

  • Singh S, Herrmann R (1983) Regionalization of crustal coda Q in the continental United States. J Geophys Res 88:527–538

    Article  Google Scholar 

  • Singh S, Ordaz M, Dattatrayam R, Gupta H (1999) A spectral analysis of the 21 May 1997, Jabalpur, India, earthquake (M w  = 5.8) and estimation of ground motion from future earthquakes in the Indian shield region. Bull Seismol Soc Am 89(6):1620–1630

    Google Scholar 

  • Toksoz MN, Johnston DH, Timur A (1979) Attenuation of seismic waves in dry and saturated rocks—I. Laboratory measurements. Geophysics 44(1):681–690

    Article  Google Scholar 

  • USGS.gov, https://earthquake.usgs.gov/learn/topics/determining_depth.php. Accessed Dec 2016

  • Vassiliou M, Salvado CA, Tittmann BR (1982) Seismic attenuation. In: Carmichael R (ed) CRC hand-book of physical properties of rocks. CRC Press, Boca Raton, pp 295–328

    Google Scholar 

  • Wilkie J, Gibson G (1995) Estimation of seismic quality factor (Q) for Victoria, Australia. AGSO J Aust Geol Geophys 15(4):511–517

    Google Scholar 

  • Winkler KW, Nur A (1982) Seismic attenuation effects of pore fluids and frictional sliding. Geophysics 47(1):1–15

    Article  Google Scholar 

  • Wong Y, Zheng S, Liu J, Kang Y, Tam C, Leung Y, Zhao X (2002) Attenuation function of ground motions and source parameters for Guangdong region of Southern China. In: Proceedings of international conference on advances and new challenges in earthquake engineering research, Hong Kong

  • Yoshimoto K, Sato H, Ohtake M (1993) Frequency dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda normalization method. Geophys J Int 114:165–174

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the INSPIRE Faculty programme by the Department of Science and Technology (DST), Government of India, for the funding project “Propagation path characterization and determination of in situ slips along different active faults in the Shillong Plateau” ref. no. DST/INSPIRE/04/2014/002617 [IFA14-ENG-104] and for providing necessary motivation and support for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar.

Ethics declarations

The authors with their full knowledge ensure here that this work has not been submitted to any other journal in any form. Also the work presented here is original to this manuscript. Proper referencing has been done for all the necessary works published previously. In case the work is found matching or similar to other works, the Journal authorities have full right to reject the work and take needful action.

Appendix

Appendix

See Figs. 13 and 14.

Fig. 13
figure 13

Flow chart of MATLAB code for direct Q determination

Fig. 14
figure 14

Flow chart of MATLAB code for coda Q determination

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Kumar, A. Determination of seismic wave attenuation in Delhi, India, towards quantification of regional seismic hazard. Nat Hazards 92, 1039–1064 (2018). https://doi.org/10.1007/s11069-018-3238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-018-3238-7

Keywords

Navigation