A critical review of potential tsunamigenic sources as first step towards the tsunami hazard assessment for the Napoli Gulf (Southern Italy) highly populated area

Abstract

Catastrophic tsunami events like those occurred in Papua New Guinea in 1998, Sumatra in 2004 and Japan in 2011, attracted the attention of the scientific community and promoted the development of different tools for assessing tsunami hazard. A preliminary step towards this goal is the knowledge of the events which might affect a specific coastal zone. In this context, we propose a method to identify the tsunami events possibly occurring in areas characterized by scarce data and a non-conservative environment. Accordingly, we propose different indices to summarize the knowledge on tsunami triggering mechanisms (earthquakes, landslides, volcanic eruptions), the characteristics of those mechanisms (magnitude of earthquakes, volume of landslide, Volcanic Explosivity Index) and tsunami features (water height, run-up, wave amplitude, propagation time). This knowledge, considered over a wider area than that of interest, allows for a paramount vision of possible hazardous events that could affect a particular coastal zone. Moreover, the tsunami simulation data and the analysis of potentially tsunamigenic slides which occurred on the Campania continental margins were also considered in the analysis. We focused our attention on Napoli megacity, because the high population density (about 1 million of people live on a territory of 117 km2), together with the presence of active volcanic areas (Ischia, Somma-Vesuvio and Campi Flegrei), make this city potentially exposed to tsunami risk. The main outcome of such an approach shows that in the near field a tsunami amplitude varying from a few centimetres (30–40 cm) to some metres (1–4 m) might be expected at the coastline if the tsunami event was triggered by volcanic activity, whereas no relevant tsunami event should be expected given the peculiar seismicity of the Neapolitan volcanic areas, with earthquakes rarely exceeding 4 Mw, if any possible cascade effects are overlooked. A morphometric analysis of high-resolution bathymetry collected between Ventotene Island and the Gulf of Salerno has shown that the submarine southern sectors of the Ischia Island and the Sorrento Peninsula are characterized by a high density of landslide scars, being thus a potential source area of landslide-generated tsunamis. However, despite the susceptibility of these areas to recurrent slope failures, only four submarine landslide scars were found to be potentially tsunamigenic with estimated tsunami amplitude of few metres at the coastline as predicted by coupling slide morphometry with tsunami amplitude equations. Concerning the tsunamis generated by earthquakes in the Western Mediterranean, only those triggered by high magnitude events (value ≥ 6–7 Mw) might affect the city of Napoli with an amplitude not exceeding 0.5 m, in about 30′.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(modified from Milia and Torrente 1999; Casciello et al. 2006; Violante 2009)

References

  1. Aiello G, Budillon F, Cristofalo G, D’Argenio B, de Alteriis G, De Lauro M, Ferraro L, Marsella E, Pelosi N, Sacchi M, Tonielli R (2001) Marine geology and morphobathymetry in the Bay of Napoli (South-Eastern Tyrrhenian Sea, Italy). In: Faranda FM, Guglielmo L, Spezie G (eds) Structures and Processes of the Mediterranean Ecosystems. Springer-Verlag, Milan, pp 1–8  

  2. Alberico I, Petrosino P (2015) The hazard indices as a tool to support the territorial planning: the case study of Ischia Island (Southern Italy). Eng Geol 197:225–239

    Article  Google Scholar 

  3. Álvarez-Gómez JA, Aniel-Quirogaa Í, Gonzáleza M, Olabarrietac M, Carreñod E (2011) Scenarios for earthquake-generated tsunamis on a complex tectonic area of diffuse deformation and low velocity: the Alboran Sea, Western Mediterranean. Mar Geol 284(1–4):55–73. https://doi.org/10.1016/j.margeo.2011.03.008

    Article  Google Scholar 

  4. Ambraseys NN (1962) Data for the investigation of the seismic sea-waves in the Eastern Mediterranean. B Seismol Soc Am 52(4):895–913

    Google Scholar 

  5. Argnani A, Armigliato A, Pagnoni G, Zaniboni F, Tinti S, Bonazzi C (2012) Active tectonics along the submarine slope of south-eastern Sicily and the source of the 11 January 1693 earthquake and tsunami. Nat Hazards Earth Syst Sci 12:1311–1319. https://doi.org/10.5194/nhess-12-1311-2012

    Article  Google Scholar 

  6. Baratta M (1897) II Vesuvio e le sue eruzioni. Dall’anno 79 d.C. al 1896. Roma, Italy

  7. Baratta M (1901) I terremoti d’Italia: saggio di storia, geografia e bibliografia sismica italiana (No. 9). Torino, Italy

  8. Baratta M (1910) La catastrofe sismica Calabro messinese (28 dicembre 1908). Società geografica italiana, Roma

    Google Scholar 

  9. Bedosti B, Caputo M (1986) Primo aggiornamento del catalogo dei maremoti delle coste italiane. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rend Lincei Mat Appl 80(7–12):570–584

  10. Billi A, Funiciello R, Minelli L, Faccenna C, Neri G, Orecchio B, Presti D (2008) On the cause of the 1908 Messina tsunami, southern Italy. Geophys Res Lett 35(6):1–5. https://doi.org/10.1029/2008GL033251

    Article  Google Scholar 

  11. Billi A, Minelli L, Orecchio B, Presti D (2010) Constraints to the cause of three Historical tsunamis (1908, 1783, and 1693) in the Messina Straits Region, Sicily, Southern Italy. Seismol Res Lett 81(6):907–915. https://doi.org/10.1785/gssrl.81.6.907

    Article  Google Scholar 

  12. Billi A, Faccenna C, Bellier O, Minelli L, Neri G, Piromallo C, Scrocca D, Serpelloni E (2011) Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean. Bull Soc Géol France 182(4):279–303

    Article  Google Scholar 

  13. Bohannon RG, Gardner JV (2004) Submarine landslides of San Pedro Escarpment, southwest of Long Beach, California. Mar Geol 203(3–4):261–268. https://doi.org/10.1016/S0025-3227(03)00309-8

    Article  Google Scholar 

  14. Bondevik S, Løvholtb F, Harbitzb C, Mangerudc J, Dawsond A, Svendsenc JI (2005) The Storegga Slide tsunami—comparing field observations with numerical simulations. Mar Pet Geol 22(1):195–208. https://doi.org/10.1016/j.marpetgeo.2004.10.003

    Article  Google Scholar 

  15. Buchner G (1986) Eruzioni vulcaniche e fenomeni vulcanotettonici di età preistorica e storica nell’isola d’Ischia. In: Centre Jean Bérard, Institut Français de Napoli (ed) Tremblements de terre, eruptions volcaniques et vie des hommes dans la Campanie antique 7, pp 145–188

  16. Budillon F, Violante C, De Lauro M (2003) I fondali delle Isole Flegree, morfologia e geologia. In: Gambi MC, De Lauro M, Jannuzzi F (eds) Ambiente marino costiero e territorio delle Isole Flegree (Ischia, Procida e Vivara—Golfo di Napoli). Risultati di uno studio multidisciplinare. Mem Acc Sc Fis Mat. Napoli, vol 5, pp 45–66. ISBN88-207-3557-1

  17. Budillon F, Aiello G, Conforti A, D’Argenio B, Ferraro L, Marsella E, Monti L, Pelosi N, Tonielli R (2011a) The coastal depositional systems along the Campania continental margin (Italy, Southern Tyrrhenian Sea) since the Late Pleistocene: New Information Gathered in the Frame of the CARG Project. In: Brugnoli E et al (eds) Marine Research at CNR, Chapter Marine Geology, pp 540–551. ISSN 2239-5172

  18. Budillon F, Conforti A, Tonielli R, D’Argenio B, Marsella E (2011b) Morfobatimetria del Golfo di Pozzuoli. In: Lirer L (ed) I Campi Flegrei, Storia di un campo vulcanico. Quaderni dell’Accademia Pontaniana, vol 57, pp 105–120

  19. Budillon F, Cesarano M, Conforti A, Pappone G, Di Martino G, Pelosi N (2014) Recurrent superficial sediment failure and deep gravitational deformation in a Pleistocene slope marine succession: the Poseidonia Slide (Salerno Bay, Tyrrhenian Sea). In: Krastel S et al (eds) Submarine mass movements and their consequences, vol 37. Springer, Berlin, pp 273–283. https://doi.org/10.1007/978-3-319-00972-8_24

    Google Scholar 

  20. Camerlenghi A, Urgeles R, Fantoni L (2010) A database on submarine landslides of the Mediterranean Sea. In: Mosher DC, Moscardelli L, Shipp RC, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences, Advances in natural and technological hazards research, vol 28. Spinger, Dordrecht, pp 503–513  

  21. Canals M, Casamor JL, Urgeles R, Lastras G, Masson D, Berne S, Alonso B, De Batist M (2000) The Ebro continental margin, Western Mediterranean Sea: interplay between canyon-channel systems and mass wasting processes. In: Nelson H, Weimer P(eds) GCS SEPM Foundation 20th Annual Conference, Houston Texas (USA), pp 152–174 (CD edition)

  22. Caputo M, Faita G (1984) Primo catalogo dei maremoti delle coste italiane. Atti Accad Naz Lin 17:213–356

    Google Scholar 

  23. Casalbore D, Romagnoli C, Bosman A, Chiocci FL (2011) Potential tsunamigenic landslides at Stromboli Volcano (Italy): insight from marine DEM analysis. Geomorphology 126(1–2):42–50. https://doi.org/10.1016/j.geomorph.2010.10.026

    Article  Google Scholar 

  24. Casalbore D, Bosman A, Martorelli E, Sposato A, Chiocci FL (2014) Mass wasting features on the submarine flanks of Ventotene volcanic edifice (Tyrrhenian Sea, Italy). Submarine mass movements and their consequences, advances in natural and technological hazards research, vol 37. Springer, Berlin, pp 285–293. https://doi.org/10.1007/978-3-319-00972-8_25

    Google Scholar 

  25. Casalbore D, Romagnoli C, Pimentel A, Quartau R, Casas D, Ercilla G, Hipolito A, Sposato A, Chiocci FL (2015) Volcanic, tectonic and mass-wasting processes offshore Terceira Island (Azores) revealed by high-resolution seafloor mapping. Bull Volcanol 77:24. https://doi.org/10.1007/s00445-015-0905-3

    Article  Google Scholar 

  26. Casalbore D, Romagnoli C, Bosman A, Anzidei M, Chiocci FL (2017) Coastal hazard due to submarine canyons in active insular volcanoes: examples from Lipari Island (southern Tyrrhenian Sea). J Coast Conserv. https://doi.org/10.1007/s11852-017-0549-x

    Google Scholar 

  27. Casas D, Chiocci F, Casalbore D, Ercilla G, de Urbina JO (2016) Magnitude-frequency distribution of submarine landslides in the Gioia Basin (southern Tyrrhenian Sea). Geo Mar Lett 36(6):405–414. https://doi.org/10.1007/s00367-016-0458-2

    Article  Google Scholar 

  28. Casciello E, Cesarano M, Pappone G (2006) Extensional detachment faulting on the Tyrrhenian margin of the southern Apennines contractional belt (Italy). J Geol Soc 163(4):617–629. https://doi.org/10.1144/0016-764905-054

    Article  Google Scholar 

  29. Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA (2004) The Tansmed Atlas—the Mediterranean region from crust to mantle. Springer, Berlin, pp 1–141

    Google Scholar 

  30. Chaytor JD, Twichell DC, ten Brink US, Buczkowski BJ, Andrews BD (2007) Revisiting submarine mass movements along the U.S. Atlantic continental margin: implications for tsunami hazards. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, vol 27. Springer, Berlin, pp 395–403

    Google Scholar 

  31. Chiocci FL, de Alteriis G (2006) The Ischia debris avalanche: first clear submarine evidence in the Mediterranean of a volcanic island prehistorical collapse. Terra Nova 18:202–209. https://doi.org/10.1111/j.1365-3121.2006.00680.x

    Article  Google Scholar 

  32. Chiocci FL, Romagnoli C, Bosman A (2008) Morphologic resilience and depositional processes due to the rapid evolution of the submerged Sciara del Fuoco (Stromboli Island) after the December 2002 submarine slide and tsunami. Geomorphology 100(3–4):356–365. https://doi.org/10.1016/j.geomorph.2008.01.008

    Article  Google Scholar 

  33. Colantoni P, Gennesseaux M, Vanney JR, Ulzega A, Melegari G, Trombetta A (1992) Processi dinamici del canyon sottomarino di Gioia Tauro (Mare Tirreno). GeoActa 54(2):199–213

    Google Scholar 

  34. Convertito V, Zollo A (2011) Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bull Volcanol 73(6):767–783. https://doi.org/10.1007/s00445-011-0455-2

    Article  Google Scholar 

  35. Cubellis E, Luongo G (1998) Sismicità storica dell’isola di Ischia. In: Il terremoto del 28 luglio 1883 a Casamiccia nell’isola di Ischia—“il contesto fisico”. Monografia n.1—Servizio Sismico Nazionale. Istituto Poligrafico e Zecca dello Stato Roma, pp 49–57

  36. D’Onofrio A (1805) Lettera ad un amico in provincia sul tremuto accaduto a 2 luglio e seguito dall’eruzione vesuviana del 12 agosto del corrente 1805. Napoli

  37. Dall’Osso F, Dominey-Howes D, Moore C, Summerhayes S, Withycombe G (2014) The exposure of Sydney (Australia) to earthquake-generated tsunamis, storms and sea level rise: a probabilistic multi-hazard approach. Sci Rep 4(7401):1–11. https://doi.org/10.1038/srep07401

    Google Scholar 

  38. D’Argenio B, Angelino A, Aiello G, de Alteriis G, Milia A, Sacchi M, Tonielli R, Budillon F, Chiocci F, Conforti A, De Lauro M, Di Martino G, d’Isanto C, Esposito E, Ferraro L, Innangi S, Insinga D, Iorio M, Marsella E, Molisso F, Morra V, Passaro S, Pelosi N, Porfido S, Raspini A, Ruggieri S, Sarnacchiaro G, Terranova C, Vilardo G, Violante C (2004) Digital elevation model of the Naples bay and adjacent areas, eastern Tyrrhenian Sea. In: Paquaré G, Venturini C, Groppelli G (eds) Mapping geology in Italy, APAT, S.E.L.C.A., Firenze, pp 21–28

  39. De Alteriis G, Violante C (2009) Catastrophic landslides off Ischia volcanic island (Italy) during prehistory. Geol Soc Lond Spec Publ 322:73–104. https://doi.org/10.1144/SP322.3

    Article  Google Scholar 

  40. De Alteriis G, Insinga DD, Morabito S, Morra V, Chiocci FL, Terrasi F, Lubritto C, Di Benedetto C, Pazzanese M (2010) Age of submarine debris avalanches and tephrostratigraphy offshore Ischia Island, Tyrrhenian Sea, Italy. Mar Geol 278(1–4):1–18. https://doi.org/10.1016/j.margeo.2010.08.004

    Article  Google Scholar 

  41. Del Pezzo E, De Natale G, Martini M, Zollo A (1987) Source parameters of microearthquakes at Phlegrean Fields (southern Italy) volcanic area. Phys Earth Planet 47:25–42

    Article  Google Scholar 

  42. Della Seta M, Marotta E, Orsi G, de Vita S, Sansivero F, Fredi P (2012) Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy). Bull Volcanol 74(1):79–106. https://doi.org/10.1007/s00445-011-0501-0

    Article  Google Scholar 

  43. Dvorak JJ, Gasparini P (1991) History of earthquakes and vertical movement in Campi Flegrei Caldera, southern Italy: comparison of precursory events to the A.D. 1538 eruption of Monte Nuovo and activity since 1968. J Volcanol Geotherm Res 48:77–92

    Article  Google Scholar 

  44. Eckert S, Jelinek R, Zeurg G, Krausmann E (2012) Remote sensing-based assessment of tsunami vulnerability and risk in Alexandria, Egypt. Appl Geogr 32:714–723. https://doi.org/10.1016/j.apgeog.2011.08.003

    Article  Google Scholar 

  45. EMTC (2014) http://roma2.rm.ingv.it/en/facilities/data_bases/52/catalogue_of_the_euro-mediterranean_tsunamis. Accessed 28 Mar 2017

  46. Faccenna C, Jolivet L, Piromallo C, Morelli A (2003) Subduction and the depth of convection in the Mediterranean mantle. J Geophys Res Solid Earth. https://doi.org/10.1029/2001JB001690

    Google Scholar 

  47. Federici B, Bacino F, Cosso T, Poggi P, Rebaudengo Landó L, Sguerso D (2006) Analisi del rischio tsunami applicata ad un tratto della costa Ligure. Geomat Workb 6:53–57

    Google Scholar 

  48. Fournier D’Albe EM (1979) Objective of volcanic monitoring and prediction. J Geol Soc 136:321–326

    Article  Google Scholar 

  49. Glade T (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA 51:297–314

    Article  Google Scholar 

  50. Goldfinger LE, Jiang L, Hopkinson SB, Stack MS, Jones JC (2000) Spatial regulation and activity modulation of plasmin by high affinity binding to the G domain of the α3 subunit of laminin-5. J Biol Chem 275(45):34887–34893. https://doi.org/10.1074/jbc.M006652200

    Article  Google Scholar 

  51. González FI, Geist EL, Jaffe B, Kânoğlu U, Mofjeld H, Synolakis CE, Titov VV, Arcas D, Bellomo D, Carlton D, Horning T, Johnson J, Newman J, Parsons T, Peters R, Peterson C, Priest G, Venturato A, Weber J, Wong F, Yalciner A (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. J Geophys Res 114:C11023. https://doi.org/10.10029/2008JC005132

    Article  Google Scholar 

  52. Graziani L, Maramai A, Tinti S (2006) A revision of the 1783–1784 Calabrian (southern Italy) tsunamis. Nat Hazards Earth Syst Sci 6:1053–1060

    Article  Google Scholar 

  53. Grezio A, Gasparini P, Marzocchi W, Patera A, Tinti S (2012) Tsunami risk assessments in Messina, Sicily, Italy. Nat Hazards Earth Syst Sci 12:151–163. https://doi.org/10.5194/nhess-12-151-2012

    Article  Google Scholar 

  54. Grilli ST, Watts P (1999) Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Eng Anal Bound Elem 23(8):645–656

    Article  Google Scholar 

  55. Guidoboni E, Tinti S (1988) A review of the historical 1627 tsunami in the Southern Adriatic. Sci Tsunami Hazards 6:11–16

    Google Scholar 

  56. Harbitz CB, Lòvholt F, Pedersen G, Masson DG (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Nor J Geol 86:255–264

    Google Scholar 

  57. Heidarzadeh M, Krastel S, Yalciner AC (2014) The state-of-the-art numerical tools for modeling landslide tsunamis: a short review. In: Kraste S, Beahrmann JH, Volker D, Stipp M et al (eds) Submarine mass movements and their consequences, Advances in natural and technological hazards research, vol 37. Springer, Berlin, pp 483–495. https://doi.org/10.1007/978-3-319-00972-843

    Google Scholar 

  58. Ioualalen M, Migeon S, Sardoux O (2010) Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. Geophys J Int 181:724–740. https://doi.org/10.1111/j.1365-246X.2010.04572.x

    Google Scholar 

  59. Ioualalen M, Larroque C, Scotti O, Daubord C (2014) Tsunami mapping related to local earthquakes on the French-Italian Riviera (Western Mediterranean). Pure Appl Geophys 171(7):1423–1443. https://doi.org/10.1007/s00024-013-0699-1

    Article  Google Scholar 

  60. Lander JF, Whiteside LS, Lockridge PA (2003) Two decades of global tsunamis. Sci Tsunami Hazards 21(1):3

    Google Scholar 

  61. Lastras G, Canals M, Hughes-Clarke JE, Moreno A, De Batist M, Masson DG, Cochonat P (2002) Sea floor imagery from the BIG’95 debris flow, western Mediterranean. Geology 30(10):817–874

    Article  Google Scholar 

  62. Lirer L, Petrosino P, Alberico I (2001) Hazard assessment at volcanic fields: the Campi Flegrei case history. J Volcanol Geotherm Res 112(1–4):53–73

    Article  Google Scholar 

  63. Lirer L, Petrosino P, Munno R, Grimaldi M (2009) Vesuvius through history and science. Mondadori Electa, Napoli

    Google Scholar 

  64. Lirer L, Petrosino P, Alberico I (2010) Hazard and risk assessment in a complex multi-source volcanic area: the example of the Campania region, Italy. Bull Volcanol 72(4):411–429. https://doi.org/10.1007/s00445-009-0334-2

    Article  Google Scholar 

  65. Lo Iacono C, Sulli A, Agata M, Lo Presti V, Pepe F, Catatlano R (2011) Submarine canyon morphologies in the Gulf of Palermo (Southern Tyrrhenian Sea) and possible implications for geo-hazard. Mar Geophys Res 32(1):127–138. https://doi.org/10.1007/s11001-011-9118-0

    Article  Google Scholar 

  66. Locat J, Lee HJ, Locat P, Imran J (2004) Numerical analysis of the mobility of the Palos Verdes debris avalanche, California, and its implication for the generation of tsunamis. Mar Geol 203(3):269–280. https://doi.org/10.1016/S0025-3227(03)00310-4

    Article  Google Scholar 

  67. Lorito S, Tiberti MM, Basili R, Piatanesi A, Valensise G (2008) Earthquake-generated tsunamis in the Mediterranean Sea: scenarios of potential threats to Southern Italy. J Geophys Res. https://doi.org/10.1029/2007JB004943

    Google Scholar 

  68. Løvholt F, Glimsdal S, Harbitz CB, Horspool N, Smebye H, de Bono A, Nadim F (2014) Global tsunami hazard and exposure due to large co-seismic slip. Int J Disaster Risk Reduct 10:406–418

    Article  Google Scholar 

  69. Macias J, Vàzquez JT, Fernàndez-Salas LM, Gonzaàlez-Vida JM, Bàrcenas P, Castro MJ, Dìaz-del-Rìo V, Alonso B (2015) The Al-Borani submarine landslide and associated tsunami. A modelling approach. Mar Geol 361:79–95

    Article  Google Scholar 

  70. Mallet R (1854) Catalogue of recorded Earthquakes 1606 B.C.–1850 A.D. Reports on the state of science, third report of the facts of earthquakes phenomena, British Association for the Advancement of Science, London, pp 1852–1854

  71. Maramai A, Graziani L, Alessio G, Burrato P, Colini L, Cucci L, Nappi R, Nardi A, Vilardo G (2005a) Near-and far-field survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami. Mar Geol 215:93–106. https://doi.org/10.1016/j.margeo.2004.11.009

    Article  Google Scholar 

  72. Maramai A, Graziani L, Tinti S (2005b) Tsunamis in the Aeolian Islands (southern Italy): a review. Mar Geol 215(1):11–21

    Article  Google Scholar 

  73. Maramai A, Brizuela B, Graziani L (2014) The Euro-Mediterranean Tsunami Catalogue. Ann Geophys-Italy 57(4):1–26

    Google Scholar 

  74. Mazzanti P, Bozzano F (2011) Revisiting the February 6th 1783 Scilla (Calabria, Italy) landslide and tsunami by numerical simulation. Mar Geophys Res 32(1–2):273–286. https://doi.org/10.1007/s11001-011-9117-1

    Article  Google Scholar 

  75. McAdoo BG, Watts P (2004) Tsunami hazard from submarine landslides on the Oregon continental slope. Mar Geol 203(3–4):235–245. https://doi.org/10.1016/S0025-3227(03)00307-4

    Article  Google Scholar 

  76. Mercalli G (1883) Vulcani e fenomeni vulcanici in Italia. In: Forni A (ed) Ristampa anastatica del 1981. Sala Bolognese, Milano, p 372

  77. Milia A (2000) The Dohrn canyon: a response to the eustatic fall and tectonic uplift of the outer shelf along the eastern Tyrrhenian Sea margin, Italy. Geo Mar Lett 20(2):101–108. https://doi.org/10.1007/s003670000044

    Article  Google Scholar 

  78. Milia A, Torrente MM (1999) Tectonics and stratigraphic architecture of a peri-Tyrrhenian half-graben (Bay of Naples, Italy). Tectonophysics 315(1999):301–318

    Article  Google Scholar 

  79. Milia A, Torrente MM (2007) The influence of paleogeographic setting and crustal subsidence on the architecture of ignimbrites in the Bay of Naples (Italy). Earth Planet Sci Lett 263:192–206

    Article  Google Scholar 

  80. Milia A, Torrente MM, Bellucci F (2012) A possible link between faulting, cryptodomes and lateral collapses at Vesuvius Volcano (Italy). Glob Planet Change 90–91:121–134. https://doi.org/10.1016/j.gloplacha.2011.09.011

    Article  Google Scholar 

  81. Nakamura Y, Nishimura Y, Putra PS (2012) Local variation of inundation, sedimentary characteristics, and mineral assemblages of the 2011 Tohoku-oki tsunami on the Misawa coast, Aomori, Japan. Sediment Geol 282:216–277. https://doi.org/10.1016/j.sedgeo.2012.06.003

    Article  Google Scholar 

  82. Nguyen PH, Bui QC, Vu PH, Pham TT (2014) Scenario-based tsunami hazard assessment for the coast of Vietnam from the Manila Trench source. Phys Earth Planet Inter 236:95–108. https://doi.org/10.1016/j.pepi.2014.07.003

    Article  Google Scholar 

  83. NOAA (National Geographic Data Center). http://www.ngdc.noaa.gov/hazard/tsu_db.shtml. Accessed 29 Sept 2016

  84. Omira R, Baptista MA, Miranda JM, Toto E, Catita C, Catalao J (2010) Tsunami vulnerability assessment of Casablanca—Morocco using numerical modeling and GIS tools. Nat Hazards 54(1):75–95. https://doi.org/10.1007/s11069-009-9454-4

    Article  Google Scholar 

  85. Orfanogiannaki K, Papadopoulos GA (2004) Conditional probability approaches for the occurrence of earthquake generated tsunamis. Pure Appl Geophys 164:593–603. https://doi.org/10.1007/s0024-006-0170-7

    Article  Google Scholar 

  86. Papathoma M, Dominey-Howes D (2003) Tsunami vulnerability assessment and its implications for coastal hazard analysis and disaster management planning, Gulf of Corinth, Greece. Nat Hazards Earth Syst Sci 3(6):733–747. https://doi.org/10.5194/nhess-3-733-2003

    Article  Google Scholar 

  87. Passaro S, Milano G, D’Isanto C, Ruggieri S, Tonielli R, Po Bruno P, Sprovieri M, Marsella E (2010) DTM-based morphometry of the Palinuro seamount (Eastern Tyrrhenian Sea): geomorphological and volcanological implications. Geomorphology 115:129–140

    Article  Google Scholar 

  88. Pesaresi M, Gerhardinger A, Haag F (2007) Rapid damage assessment of build-up structures using VHR Satellite Data in Tsunami Affected Area. Int J Remote Sens 28(13):3013–3036. https://doi.org/10.1080/01431160601094492

    Article  Google Scholar 

  89. Platania G (1909a) Il maremoto dello Stretto di Messina del 28 dicembre 1908. Boll Soc Sism Ital 13:369–458

    Google Scholar 

  90. Platania G (1909b) I fenomeni marittimi che accompagnarono il terremoto di Messina del 28 dicembre 1908. Riv Geogr Italy 16:154–161

    Google Scholar 

  91. Poli GS (1806) Memoria sul tremuoto de’ 26 luglio del corrente anno 1805. Napoli

  92. Rahiman TI, Pettinga JR (2006) The offshore morpho-structure and tsunami sources of the Viti Levu Seismic Zone, southeast Viti Levu, Fiji. Mar Geol 232(3–4):203–225. https://doi.org/10.1016/j.margeo.2006.07.007

    Article  Google Scholar 

  93. Rapolla A, Paoletti V, Secomandi M (2010) Seismically induced landslide susceptibility evaluation: application of a new procedure to the island of Ischia, Campania Region, Southern Italy. Eng Geol 114:10–25. https://doi.org/10.1016/j.enggeo.2010.03.006

    Article  Google Scholar 

  94. Romagnoli C, Kokelaar P, Casalbore D, Chiocci FL (2009a) Lateral collapses and active sedimentary processes on the northwestern flank of Stromboli volcano, Italy. Mar Geol 265(3–4):101–119. https://doi.org/10.1016/j.margeo.2009.06.013

    Article  Google Scholar 

  95. Romagnoli C, Casalbore D, Chiocci FL, Bosman A (2009b) Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli, Italy, due to structurally-controlled, bilateral flank instability. Mar Geol 262(1–4):1–13. https://doi.org/10.1016/j.margeo.2009.02.004

    Article  Google Scholar 

  96. Romagnoli C, Casalbore D, Bosman A, Braga R, Chiocci FL (2013) Submarine structure of Vulcano volcano (Aeolian Islands) revealed by high-resolution bathymetry and seismo-acoustic data Marine. Geology 338:30–45

    Google Scholar 

  97. Sacchi M, Molisso F, Violante C, Esposito E, Insinga D, Lubritto C, Porfido S, Toth T (2009) Insights into flood-dominated fan-deltas: very high-resolution seismic examples off the Amalfi cliffed coasts, eastern Tyrrhenian Sea. Geol Soc Lond Spec Publ 322:33–71. https://doi.org/10.1144/SP322.2

    Article  Google Scholar 

  98. Sahal A, Roger J, Allgeyer S, Lemaire B, Hébert H, Schindelé F, Lavigne F (2009) The tsunami triggered by the 21 May 2003 Boumerd`es-Zemmouri (Algeria) earthquake: field investigations on the French Mediterranean coast and tsunami modelling. Nat Hazards Earth Syst Sci 9:1823–1834

    Article  Google Scholar 

  99. Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geotherm Res 177:1–18

    Article  Google Scholar 

  100. Scandone R, Giacomelli L, Gasparini P (1993) Mount Vesuvius: 2000 years of volcanological observations. J Volcanol Geotherm Res 58:5–25

    Article  Google Scholar 

  101. SOER (2015) The European environment state and outlook Synthesis Report. Eur Environ Agency. https://doi.org/10.2800/944899

    Google Scholar 

  102. Sultan N, Savoye B, Jouet G, Leynaud D, Cochonat P, Henry P, Stegmann S, Kopf A (2010) Investigation of a possible submarine landslide at the Var delta front (Nice continental slope, southeast France). Can Geotech J 47(4):486–496

    Article  Google Scholar 

  103. Szczucinski W, Chaimanee N, Niedzielski P, Rachlewicz G, Saisuttichai D, Tepsuwan T, Lorenc S, Siepak J (2006) Environmental and geological impacts of the 26 December 2004 Tsunami in coastal zone of Thailand—overview of short and long-term effects. Pol J Environ Stud 15(5):793–810

    Google Scholar 

  104. Tibaldi A (2001) Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull Volcanol 63:112–125. https://doi.org/10.1007/s004450100129

    Article  Google Scholar 

  105. Tinti S (1991a) Tsunami potential in southern Italy. Sci Tsunami Hazards 9(1):5–14

    Google Scholar 

  106. Tinti S (1991b) Assessment of tsunami hazard in the Italian Seas. Nat Hazards 4(2):267–283. https://doi.org/10.1007/BF00162792

    Article  Google Scholar 

  107. Tinti S, Armigliato A (2003) The use of scenarios to evaluate tsunami impact in south Italy. Mar Geol 199(3–4):221–243. https://doi.org/10.1016/S0025-3227(03)00192-0

    Article  Google Scholar 

  108. Tinti S, Gavagni I (1995) A smoothing algorithm to enhance finite-element tsunami modelling: an application to the 5 February 1783 Calabrian case, Italy. Nat Hazards 12:161–197. https://doi.org/10.1007/BF00613075

    Article  Google Scholar 

  109. Tinti S, Giuliani D (1983) The Messina Straits tsunami of December 28, 1908: a critical review of experimental data and observations. Il Nuovo Cimento 6:429–442

    Article  Google Scholar 

  110. Tinti S, Guidoboni E (1988) Revision of the tsunamis occurred in 1783 in Calabria and Sicily (Italy). Sci Tsunami Hazards 6:17–22

    Google Scholar 

  111. Tinti S, Maramai A (1996) Catalog of tsunami generated in Italy and in Cote d’Aruz, France a step towards a unified calalogue of tsunamis in Europe. Ann Geophys Italy 39(6):1253–1273

    Google Scholar 

  112. Tinti S, Bortolucci E, Armigliato A (1999a) Numerical simulation of the landslide-induced tsunami of 1988 on Vulcano Island, Italy. Bull Volcanol 61(1):121–137

    Article  Google Scholar 

  113. Tinti S, Armigliato A, Bortolucci E, Piatanesi A (1999b) Identification of the source fault of the 1908 Messina earthquake through tsunami modelling. Is it a possible pask? Phys Chem Earth 24(5):417–421

    Article  Google Scholar 

  114. Tinti S, Maramai A, Graziani L (2001) A new version of the European tsunami catalogue: updating and revision. Nat Hazard Earth Syst 1:255–262

    Article  Google Scholar 

  115. Tinti S, Pagnoni G, Piatanesi A (2003a) Simulation of tsunamis induced by volcanic activity in the Gulf of Naples (Italy). Nat Hazards Earth Syst 5:311–320

    Article  Google Scholar 

  116. Tinti S, Pagnoni G, Zaniboni F, Bortolucci E (2003b) Tsunami generation in Stromboli Island and impact on the south-east Tyrrhenian coasts. Nat Hazards Earth Syst Sci 3:299–309. https://doi.org/10.5194/nhess-3-299-2003

    Article  Google Scholar 

  117. Tinti S, Maramai A, Graziani L (2004) The new catalogue of Italian tsunamis. Nat Hazards 33:439–465. https://doi.org/10.1023/B:NHAZ.0000048469.51059.65

    Article  Google Scholar 

  118. Tinti S, Armigliato A, Pagnoni G, Zaniboni F (2005) Scenarios of giant tsunamis of tectonic origin in the Mediterranean. J Earthq Technol 464(42, 4):171–188

    Google Scholar 

  119. Tinti S, Pagnoni G, Zaniboni F (2006a) The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations. Bull Volcanol 68(5):462–479. https://doi.org/10.1007/s00445-005-0022-9

    Article  Google Scholar 

  120. Tinti S, Maramai A, Armigliato A, Graziani L, Manucci A, Pagnoni G, Zaniboni F (2006b) Observations of physical effects from tsunamis of December 30, 2002 at Stromboli volcano, southern Italy. Bull Volcanol 68(5):450–461. https://doi.org/10.1007/s00445-005-0021-x

    Article  Google Scholar 

  121. Tinti S, Maramai A, Graziani L (2007) The Italian tsunami catalogue – Version 2. http://portale.ingv.it/servizi-e-risorse/BD/catalogo-tsunami/catalogo-degli-tsunamiitaliani

  122. Tinti S, Zaniboni F, Pagnoni G, Manucci A (2008) Stromboli Island (Italy): scenarios of tsunamis generated by submarine landslides. Pure Appl Geophys 165:2143–2167. https://doi.org/10.1007/s00024-008-0420-y

    Article  Google Scholar 

  123. Tinti S, Armigliato A, Pagnoni G, Zaniboni F, Tonini R (2011) Tsunamis in the Euro-mediterranean region: emergency and long term countermeasures. In: Marine geo-hazards in the mediterranean, MONACO, CIESM, 2011, pp 113–120

  124. Tonini R, Armigliato A, Pagnoni G, Zaniboni F, Tinti S (2011) Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA). Nat Hazards Earth Syst Sci 11(5):1217–1232. https://doi.org/10.5194/nhess-11-1217-2011

    Article  Google Scholar 

  125. UNESCO (1972) Consultative meeting of experts on the statistical study of natural hazards and their consequences. France, Paris

    Google Scholar 

  126. Urgeles R, Camerlenghi A (2013) Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution. J Geophys Res 118(4):2600–2618. https://doi.org/10.1002/2013JF002720

    Article  Google Scholar 

  127. Ventura G, Milano G, Passaro S, Sprovieri M (2013) The Marsili ridge (Southern Tyrrhenian Sea, Italy): an island-arc volcanic complex emplaced on a ‘relict’ back-arc basin. Earth Sci Rev 116(1):85–94

    Article  Google Scholar 

  128. Violante C (2009) Rocky coast: geological constraints for hazard assessment. Geol Soc Lond Spec Publ 322:1–31. https://doi.org/10.1144/SP322.1

    Article  Google Scholar 

  129. Ward SN (2001) Landslide tsunami. J Geophys Res Solid Earth 106(B6):11201–11215. https://doi.org/10.1029/2000JB900450

    Article  Google Scholar 

  130. Watts P (2000) Tsunami features of solid block underwater landslides. J Waterw Port Coast Ocean Eng 126(3):144–152. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:3(144)

    Article  Google Scholar 

  131. Zaniboni F, Pagnoni G, Della Tinti S, Seta M, Fredi P, Marotta E, Orsi G (2013) The potential failure of Monte Nuovo at Ischia Island (Southern Italy): numerical assessment of a likely induced tsunami and its effects on a densely inhabited area. Bull Volcanol 75:763–776

    Article  Google Scholar 

  132. Zaniboni F, Pagnoni G, Armigliato A, Tinti S, Iglesias O, Canals M (2014a) Numerical simulation of the BIG’95 Debris flow and of the generated tsunami. Eng Geol Soc Territ 4:97–102

    Google Scholar 

  133. Zaniboni F, Zaniboni F, Armigliato A, Elsen K, Pagnoni G, Tinti S (2014b) The 1977 Gioia Tauro Harbour (South Tyrrhenian Sea, Italy) landslide-tsunami: numerical simulation. Landslide Sci Safer Geoenviron 3:589–594. https://doi.org/10.1007/978-3-319-04996-0_90

    Article  Google Scholar 

Download references

Acknowledgements

This study benefited with the contribution of RITMARE Flagship Project, funded by MIUR (NRP 2011–2013), granted to I.A. and F.B. The bathymetric dataset used for this study was collected in the frame of CARG project (CARtografia Geologica, http://www.isprambiente.gov.it/Media/carg/campania.html) and Magic (Marine Geo-hazards along the Italian Coasts, http://www.protezionecivile.gov.it/). The suggestions of Ramalho R. and anonymous reviewers, whom the authors gratefully appreciate greatly improved a nearly version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Alberico.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

Summary of tsunami features recovered from scientific literature review (DOCX 53 kb)

Appendix 2

Description of tsunami events occurred in the Napoli Gulf (DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alberico, I., Budillon, F., Casalbore, D. et al. A critical review of potential tsunamigenic sources as first step towards the tsunami hazard assessment for the Napoli Gulf (Southern Italy) highly populated area. Nat Hazards 92, 43–76 (2018). https://doi.org/10.1007/s11069-018-3191-5

Download citation

Keywords

  • Tsunami events
  • Submarine landslides
  • Indices
  • Western Mediterranean Sea
  • Gulf of Napoli