Natural Hazards

, Volume 90, Issue 3, pp 1277–1307 | Cite as

The intriguing tsunami of 19 March 2017 at Bandar Dayyer, Iran: field survey and simulations

  • Amir Salaree
  • Reza Mansouri
  • Emile A. Okal
Original Paper


We present a field survey and a number of simulations of the local Persian Gulf tsunami of 19 March 2017 at Bandar Dayyer, Iran, which resulted in one death, five persons missing and significant damage to the port. The field survey defined the inundated area as extending \(\sim\, 40\) km along the coast, with major effects concentrated on an \(\sim\, 8\) km stretch immediately west of Dayyer, a maximum run-up of 3 m and maximum inundation reaching 600 m. In the absence of significant earthquakes on that day, we first test the possibility of generation of a landslide; however, our simulations for legitimate sources fail to reproduce the distribution of run-up along the coast. We prefer the model of a meteorological tsunami, triggered by Proudman resonance with a hypothetical weather front moving at 10 m/s in a NNW azimuth, which could be an ancillary phenomenon to a major shamal wind system present over the Persian Gulf on that day. More detailed simulations of the Dayyer tsunami would require an improved bathymetric grid in the vicinity of the relevant coastal segment.


Tsunami Meteotsunami Persian Gulf Field survey Simulation 



The authors wish to thank Persian Gulf University for their help on the field survey. We thank Mohammed Ayoub and Marwan Khraisheh of Qatar Environment and Energy Research Institute (QEERI) at Hamad Bin Khalifa University who provided us with the Qatari barometric records. The original version of the paper was improved by the comments of A. B. Rabinovich and two anonymous reviewers. We are also grateful to Douglas MacAyeal for pointing us to the NASA dataset of atmospheric imagery. Some of the figures were created using the Generic Mapping Tools (Wessel and Smith 1991) and Gnuplot (Williams and Kelley 2009) packages.


  1. Abe K (2005) Tsunami resonance curve from dominant periods observed in bays of northeastern Japan. In: Satake K (ed) Tsunamis: Case studies and recent developments. Springer, pp 97–113Google Scholar
  2. Abe Ku, Abe Ka, Tsuji Y, Imamura F, Katao H, Iio Y, Satake K, Bourgeois J, Noguera E, Estrada F (1993) Field survey of the Nicaragua earthquake and tsunami of September 2, 1992. Bull Earthq Res Inst Tokyo Univ 68:23–70Google Scholar
  3. Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, Boulder, ColoradoGoogle Scholar
  4. Ambraseys NN (2008) Descriptive catalogues of historical earthquakes in the Eastern Mediterranean and the Middle East; Revisited. In: Fréchet J, Meghraoui M, Stucchi M (eds) Historical seismology. Modern approaches in solid earth sciences, vol 2. Springer, Dordrechtpp, pp 25−39Google Scholar
  5. Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, CambridgeGoogle Scholar
  6. Baum RL, Chleborad AF, Schuster RL (1998) Landslides triggered by the winter 1996–97 storms in the Puget Lowland, Washington. Technical report, US Department of the Interior, US Geological Survey:[Branch of Information Services, distributor]Google Scholar
  7. Bitan A, Sa’Aroni H (1992) The horizontal and vertical extension of the Persian Gulf pressure trough. Int J Climatol 12(7):733–747CrossRefGoogle Scholar
  8. Borrero JC, Lynett PJ, Kalligeris N (2015) Tsunami currents in ports. Philos Trans R Soc A 373(2053):20140372CrossRefGoogle Scholar
  9. Brunsden D, Prior DB (1984) Slope instability. Wiley, New YorkGoogle Scholar
  10. Campbell KW, Bozorgnia Y (2003) Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bull Seismol Soc Am 93(1):314–331CrossRefGoogle Scholar
  11. Chrystal G, Murray J (1907) An investigation of the seiches of Loch Earn by the Scottish Lake survey. Trans R Soc Edinb 45(02):361–396CrossRefGoogle Scholar
  12. Churchill DD, Houston SH, Bond NA (1995) The Daytona Beach wave of 3–4 July 1992: a shallow-water gravity wave forced by a propagating squall line. Bull Am Meteorol Soc 76(1):21–32CrossRefGoogle Scholar
  13. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math Ann 100(1):32–74CrossRefGoogle Scholar
  14. Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists, vol 2. World scientific publishing Co Inc, SingaporeGoogle Scholar
  15. Didenkulova I, Slunyaev A, Pelinovsky E, Kharif C (2006) Freak waves in 2005. Nat Hazards Earth Syst Sci 6(6):1007–1015CrossRefGoogle Scholar
  16. Dziewonski A, Chou T-A, Woodhouse J (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res Solid Earth 86(B4):2825–2852CrossRefGoogle Scholar
  17. Ekström G, Nettles M, Dziewoński A (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200:1–9CrossRefGoogle Scholar
  18. Evans G (1966) The recent sedimentary facies of the Persian Gulf region. Philos Trans R Soc Lond A Math Phys Eng Sci 259(1099):291–298CrossRefGoogle Scholar
  19. Ewing M, Press F, Donn W L (1954) An explanation of the Lake Michigan wave of 26 June 1954. Science 120:684–686CrossRefGoogle Scholar
  20. Fisher R, Jantsch M, Comer R (1982) General bathymetric chart of the oceans (GEBCO). Canadian hydrographic Service, OttawaGoogle Scholar
  21. Fritz HM, Phillips DA, Okayasu A, Shimozono T, Liu H, Mohammed F, Skanavis V, Synolakis CE, Takahashi T (2012) The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophys Res Lett 39(7):L00G23. CrossRefGoogle Scholar
  22. Geller RJ (1976) Scaling relations for earthquake source parameters and magnitudes. Bull Seismol Soc Am 66(5):1501–1523Google Scholar
  23. Giardini D, Grünthal G, Shedlock KM, Zhang P (1999) The GSHAP global seismic hazard map. Ann Geophys 42(6):1225–1230Google Scholar
  24. IRIMO (2017) I.R. of Iran Meteorological Organization. Accessed 3 Apr 2017
  25. Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95(4):406–421CrossRefGoogle Scholar
  26. Kharif C, Pelinovsky E (2003) Physical mechanisms of the rogue wave phenomenon. Eur J Mech B/Fluids 22(6):603–634CrossRefGoogle Scholar
  27. Lamb A (1964) A visit to Siraf, an ancient port on the Persian Gulf. J Malays Branch R Asiat Soc 37(1(205)):1–19Google Scholar
  28. Lantuit H, Pollard W (2008) Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 95(1):84–102CrossRefGoogle Scholar
  29. Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler Ser A Phys Geogr 75:13–23CrossRefGoogle Scholar
  30. Ma G, Kirby JT, Shi F (2013) Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Model 69:146–165CrossRefGoogle Scholar
  31. Masson D, Harbitz C, Wynn R, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans R Soc Lond A Math Phys Eng Sci 364(1845):2009–2039CrossRefGoogle Scholar
  32. Merrifield M, Firing Y, Aarup T, Agricole W, Brundrit G, Chang-Seng D, Farre R, Kilonsky B, Knight W, Kong L et al (2005) Tide gauge observations of the Indian Ocean tsunami, December 26, 2004. Geophys Res Lett 32(9):L09603 4 ppCrossRefGoogle Scholar
  33. Miller GS, Andy Take W, Mulligan RP, McDougall S (2017) Tsunamis generated by long and thin granular landslides in a large flume. J Geophys Res Oceans 122(1):653–668CrossRefGoogle Scholar
  34. Mirzaei N, Gao M, Chen Y-T (1999) Delineation of potential seismic sources for seismic zoning of Iran. J Seismol 3(1):17–30CrossRefGoogle Scholar
  35. Mirzaei N, Gheitanchi M, Naserieh S, Raeesi M, Zarifi Z, Tabaei S-G (2002) Basic parameters of earthquakes in Iran. DaneshNegar Publ, TehranGoogle Scholar
  36. Monserrat S, Rabinovich A et al (2006) Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Nat Hazards Earth Syst Sci 6(6):1035–1051CrossRefGoogle Scholar
  37. Moore DG (1961) Submarine slumps. J Sediment Res 31(3):343–357Google Scholar
  38. NASA Worldview (2017) Earth observing system data and information system. NASA’s Earth Science Data Systems. Accessed 20 May 2017
  39. Okal EA (2001) T-phase stations for the international monitoring system of the comprehensive nuclear-test ban treaty: a global perspective. Seismol Res Lett 72(2):186–196CrossRefGoogle Scholar
  40. Okal EA (2003) T waves from the 1998 Papua New Guinea earthquake and its aftershocks: timing the tsunamigenic slump. Pure Appl Geophys 160(10–11):1843–1863CrossRefGoogle Scholar
  41. Okal EA, Synolakis CE (2003) A theoretical comparison of tsunamis from dislocations and landslides. Pure Appl Geophys 160(10–11):2177–2188CrossRefGoogle Scholar
  42. Okal EA, Synolakis CE (2004) Source discriminants for near-field tsunamis. Geophys J Int 158(3):899–912CrossRefGoogle Scholar
  43. Okal EA, Synolakis CE, Fryer GJ, Heinrich P, Borrero JC, Ruscher C, Arcas D, Guille G, Rousseau D (2002) A field survey of the 1946 Aleutian tsunami in the far field. Seismol Res Lett 73(4):490–503CrossRefGoogle Scholar
  44. Okal EA, Fritz H, Sladen A (2009a) 2004 Sumatra-Andaman tsunami surveys in the Comoro islands and Tanzania and regional tsunami hazard from future Sumatra events. S Afr J Geol 112(3–4):343–358CrossRefGoogle Scholar
  45. Okal EA, Synolakis CE, Uslu B, Kalligeris N, Voukouvalas E (2009b) The 1956 earthquake and tsunami in Amorgos, Greece. Geophys J Int 178(3):1533–1554CrossRefGoogle Scholar
  46. Okal EA, Visser JN, de Beer CH (2014) The Dwarskersbos, South Africa local tsunami of August 27, 1969: field survey and simulation as a meteorological event. Nat Hazards 74(1):251–268CrossRefGoogle Scholar
  47. Orlić M (1980) About a possible occurrence of the Proudman resonance in the Adriatic. Thalassia Jugoslavica 16(1):79–88Google Scholar
  48. Orlić M, Belušić D, Janeković I, Pasarić M (2010) Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing. J Geophys Res Oceans 115(C6):C06011. Google Scholar
  49. Pattiaratchi CB, Wijeratne E (2015) Are meteotsunamis an underrated hazard? Philos Trans R Soc A 373(2053):20140377CrossRefGoogle Scholar
  50. Perrone TJ (1979) Winter shamal in the Persian Gulf. Technical report, Naval Environmental Prediction Research Facility Monterey, CAGoogle Scholar
  51. Plafker G (1997) Catastrophic tsunami generated by submarine slides and backarc thrusting during the 1992 earthquake on eastern Flores I., Indonesia. In: Geological Society of America, Cordilleran Section, 93rd Annual Meeting, vol 29, no 5, p 57Google Scholar
  52. Platzman GW (1958) A numerical computation of the surge of 26 June 1954 on Lake Michigan. University of Chicago, Department of MeteorologyGoogle Scholar
  53. Prior DB, Bornhold BD, Coleman JM, Bryant WR (1982) Morphology of a submarine slide, Kitimat Arm, British Columbia. Geology 10(11):588–592CrossRefGoogle Scholar
  54. Proudman J (1929) The effects on the sea of changes in atmospheric pressure. Mon Not R Astron Soc Geophys Suppl 2(s4):197–209CrossRefGoogle Scholar
  55. Rabinovich AB (1997) Spectral analysis of tsunami waves: separation of source and topography effects. J Geophys Res Oceans 102(C6):12663–12676CrossRefGoogle Scholar
  56. Rabinovich AB, Monserrat S (1998) Generation of meteorological tsunamis (large amplitude seiches) near the Balearic and Kuril Islands. Nat Hazards 18(1):27–55CrossRefGoogle Scholar
  57. Reynolds R (2002) Meteorology and climate. In: The Gulf ecosystem: health and sustainability. Backhuys, Leiden, pp 53–64CrossRefGoogle Scholar
  58. Rodis S (2017) What’s the tide? Accessed 2 Aug 2017
  59. Ross DA, Uchupi E, White RS (1986) The geology of the Persian Gulf–Gulf of Oman region: a synthesis. Rev Geophys 24(3):537–556CrossRefGoogle Scholar
  60. Salaree A, Okal EA (2015) Field survey and modelling of the Caspian Sea tsunami of 1990 June 20. Geophys J Int 201(2):621–639CrossRefGoogle Scholar
  61. Sallenger AH, List JH, Gelfenbaum G, Stumpf RP, Hansen M (1995) Large wave at Daytona Beach, Florida, explained as a squall-line surge. J Coast Res 11:1383–1388Google Scholar
  62. Sarnthein M (1972) Sediments and history of the postglacial transgression in the Persian Gulf and northwest Gulf of Oman. Mar Geol 12(4):245–266CrossRefGoogle Scholar
  63. Šepić J, Vilibić I, Belušić D (2009) Source of the 2007 Ist meteotsunami (Adriatic Sea). J Geophys Res Oceans 114(C3):C03016. Google Scholar
  64. Šepić J, Vilibić I, Rabinovich AB, Monserrat S (2015) Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Sci Rep 5:11682CrossRefGoogle Scholar
  65. Shuto N, Suzuki T, Hasegawa K (1986) A study of numerical techniques on the tsunami propagation and run-up. Sci Tsunami Hazard 4:111–124Google Scholar
  66. Skempton A (1953) Soil mechanics in relation to geology. Proc Yorks Geol Soc 29(1):33–62CrossRefGoogle Scholar
  67. Soomere T (2010) Rogue waves in shallow water. Eur Phys J Spec Top 185(1):81–96CrossRefGoogle Scholar
  68. Synolakis C, Imamura F, Tsuji Y, Matsutomi H, Tinti S, Cook B, Chandra Y, Usman M (1995) Damage, conditions of East Java tsunami of 1994 analyzed. EOS Trans Am Geophys Union 76(26):257–257CrossRefGoogle Scholar
  69. Synolakis CE, Bardet J-P, Borrero JC, Davies HL, Okal EA, Silver EA, Sweet S, Tappin DR (2002) The slump origin of the 1998 Papua New Guinea tsunami. Proc Roy Soc (London) Ser A 458(2020):763–789CrossRefGoogle Scholar
  70. Synolakis C, Maravelakis N, Kalligeris N, Skanavis V, Kânoğlu U, Yalçıner A, Lynett P (2016) Case study of small harbor excitation under storm and tsunami conditions. In: EGU general assembly conference abstracts, vol 18. Paper no 13825Google Scholar
  71. Tappin DR, Sibley A, Horsburgh K, Daubord C, Cox D, Long D (2013) The English Channel tsunami of 27 June 2011-a probable meteorological source. Weather 68(6):144–152CrossRefGoogle Scholar
  72. Tavakoli B, Ghafory-Ashtiany M (1999) Seismic hazard assessment of Iran. Ann Geophys 42(6):1013–1021Google Scholar
  73. Taylor DW (1948) Fundamentals of soil mechanics, vol 66. LWW, PhiladelphiaGoogle Scholar
  74. ten Brink US, Lee HJ, Geist EL, Twichell D (2009) Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Mar Geol 264(1):65–73CrossRefGoogle Scholar
  75. Thomson R, Rabinovich A, Fine I, Sinnott D, McCarthy A, Sutherland N, Neil L (2009) Meteorological tsunamis on the coasts of British Columbia and Washington. Phys Chem Earth Parts A/B/C 34(17):971–988CrossRefGoogle Scholar
  76. Thoppil PG, Hogan PJ (2010) Persian Gulf response to a wintertime shamal wind event. Deep Sea Res Part I Oceanogr Res Pap 57(8):946–955CrossRefGoogle Scholar
  77. Titov VV, Synolakis CE (1995) Modeling of breaking and nonbreaking long-wave evolution and runup using VTCS-2. J Waterw Port Coast Ocean Eng 121(6):308–316CrossRefGoogle Scholar
  78. Titov VV, Synolakis CE (1997) Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami. Geophys Res Lett 24(11):1315–1318CrossRefGoogle Scholar
  79. Titov VV, Synolakis CE (1998) Numerical modeling of tidal wave run-up. J Waterw Port Coast Ocean Eng 124(4):157–171CrossRefGoogle Scholar
  80. Titov V, Kânoğlu U, Synolakis C (2016) Development of MOST for real-time tsunami forecasting. J Waterw Port Coast Ocean Eng 142:03116004-1–03116004-16CrossRefGoogle Scholar
  81. Tofighian H (2014) Architectural analysis of the coastal segment of the Port of Siraf through underwater archaeological studies. Archaeol Stud 6(1):21–38Google Scholar
  82. Van Westen CJ, Rengers N, Terlien M, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86(2):404–414CrossRefGoogle Scholar
  83. Weaver P, Kuijpers A (1983) Climatic control of turbidite deposition on the Madeira Abyssal Plain. Nature 306(5941):360–363CrossRefGoogle Scholar
  84. Weiss R, Krastel S, Anasetti A, Wünnemann K (2013) Constraining the characteristics of tsunami waves from deformable submarine slides. Geophys J Int 194:316–321CrossRefGoogle Scholar
  85. Wessel P, Smith WH (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72(41):441 and 445–446CrossRefGoogle Scholar
  86. Whitehouse D (1968) Excavations at Sīrāf; first interim report. Iran 6:1–22CrossRefGoogle Scholar
  87. Williams T, Kelley C (2009) Gnuplot 4.2: an interactive plotting program.

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA
  2. 2.Persian Gulf UniversityBandar BushehrIran

Personalised recommendations