Skip to main content

Advertisement

Log in

Estuarine flooding in urban areas: enhancing vulnerability assessment

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The assessment of vulnerability provides valuable knowledge in the risk assessment steps of a risk governance process. Given the multiscale, multilevel, and multisectorial aspects of flood risk, the diversified entities that directly and indirectly intervene in risk management require specific outputs from the assessment studies. Urban areas in estuarine margins are particularly exposed and vulnerable to flooding. Such interface conditions are found in the Old City Centre of the Seixal, located in the Tagus estuary, Portugal. Here, two distinct methodologies were applied for the assessment of territorial vulnerability. A regional, lower-scale, methodology explores the application of the statistical procedure based on the SoVI® at the statistical block level. A second, local and higher-scale, methodology is based in data collected through field matrices at the building and statistical sub-block level. Comparison of results revealed that the lower-scale assessment provides information on the vulnerability drivers at the regional and municipal level. Nevertheless, only at a higher-scale, it is possible to characterize and differentiate the smaller geographical units of analysis that compose the Old City Centre of Seixal. The lower-scale vulnerability assessment allows a strategic response, based on adaptation measures such as spatial planning, institutional capacity building and public awareness. The local level assessment provides more accurate knowledge to support local emergency planning and the allocation of operational and material resources at the urban level. Nevertheless, rather than antagonistic, both models can be considered as complementary, having in mind the requirements of an holistic flood risk governance model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andre C, Monfort D, Bouzit M, Bouzit M, Vinchon C (2013) Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events. Nat Hazards Earth Syst Sci 13:2003–2013. doi:10.5194/nhess-13-2003-2013

    Article  Google Scholar 

  • Angeon V, Bates S (2015) Reviewing composite vulnerability and resilience indexes: a sustainable approach and application. World Dev 72:140–162. doi:10.1016/j.worlddev.2015.02.011

    Article  Google Scholar 

  • Aven T, Renn O (2010) Risk management and governance. Concepts, guidelines and applications. Springer, New York. doi:10.1007/978-3-642-13926-0

    Google Scholar 

  • Brecht H, Deichmann U, Wang H (2013) A global urban risk index. Policy Research working paper; no. WPS 6506. The World Bank. http://documents.worldbank.org/curated/pt/2013/06/17920427/global-urban-risk-index. Accessed 10 Sept 2015

  • Caçador I, Tibério S, Cabral HN (2007) Species zonation in Corroios salt marsh in the Tagus estuary (Portugal) and its dynamics in the past fifty years. Hydrobiologia 587:205–211. doi:10.1007/s10750-007-0681-y

    Article  Google Scholar 

  • Carrera L, Standardi G, Bosello F, Mysiak J (2015) Assessing direct and indirect economic impacts of a flood event through the integration of spatial and computable general equilibrium modelling. Environ Model Softw 63:109–122. doi:10.2112/SI65-139.1

    Article  Google Scholar 

  • Chen W, Cutter SL, Emrich CT, Shi P (2013) Measuring social vulnerability to natural hazards in the Yangtze River Delta region, China. Int J Disaster Risk Sci 4(4):169–181. doi:10.1007/s13753-013-0018-6

    Article  Google Scholar 

  • Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84(2):242–261. doi:10.1111/1540-6237.8402002

    Article  Google Scholar 

  • Demšar U, Harris P, Brunsdon C, Fotheringham AS, McLoone S (2013) Principal component analysis on spatial data: an overview. Ann As Am Geogr 103(1):106–128. doi:10.1080/00045608.2012.689236

    Article  Google Scholar 

  • Emrich CT, Cutter SL (2011) Social vulnerability to climate-sensitive hazards in the southern United States. Am Meteorol Soc 3(193):208. doi:10.1175/2011WCAS1092.1

    Google Scholar 

  • Fang C, Wang Y, Fang J (2016) A comprehensive assessment of urban vulnerability and its spatial differentiation in China. J Geogr Sci 26(2):153–170. doi:10.1007/s11442-016-1260-9

    Article  Google Scholar 

  • Freire P, Tavares AO, Sá L, Oliveira A, Fortunato AB, Santos PP, Rilo A, Gomes JL, Rogeiro J, Pablo R, Pinto JP (2016) A local-scale approach to estuarine flood risk management. Nat Hazards 84:1705–1739. doi:10.1007/s11069-016-2510-y

    Article  Google Scholar 

  • Fuchs S, Birkmann J, Glade T (2012) Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges. Nat Hazards 64(3):1969–1975. doi:10.1007/s11069-012-0352-9

    Article  Google Scholar 

  • Glavovic BC, Saunders WSA, Becker JS (2010) Land-use planning for natural hazards in New Zealand: the setting, barriers, ‘burning issues’ and priority actions. Nat Hazards 54(3):679–706. doi:10.1007/s11069-009-9494-9

    Article  Google Scholar 

  • Guillard-Gonçalves C, Cutter SL, Emrich CT, Zêzere JL (2014) Application of Social Vulnerability Index (SoVI) and delineation of natural risk zones in Greater Lisbon, Portugal. J Risk Res 18(1):651–674. doi:10.1080/13669877.2014.910689

    Google Scholar 

  • Hess VDC (2017) Weigh(t)ing the dimensions of social vulnerability based on a regression analysis of disaster damages. Hazards Earth Syst Sci Discuss Nat. doi:10.5194/nhess-2017-74

    Google Scholar 

  • Holand IS, Lujala P, Rod JK (2011) Social vulnerability assessment for Norway: a quantitative approach. Norsk Geogr Tidsskr 65(1):1–17. doi:10.1080/00291951.2010.550167

    Article  Google Scholar 

  • INE (2011) Population census—2011. Statistics Portugal, Lisbon

    Google Scholar 

  • Kaźmierczak A, Cavan G (2011) Surface water flooding risk to urban communities: analysis of vulnerability, hazard and exposure. Landsc Urban Plan. 103(2):185–197. doi:10.1016/j.landurbplan.2011.07.008

    Article  Google Scholar 

  • Krellenberg K, Welz J, Link F, Barth K (2016) Urban vulnerability and the contribution of socio-environmental fragmentation: theoretical and methodological pathways. Progr Hum Geogr. doi:10.1177/0309132516645959

    Google Scholar 

  • Mendes JM (2009) Social vulnerability indexes as planning tools: beyond the preparedness paradigm. J Risk Res 12(1):43–58. doi:10.1080/13669870802447962

    Article  Google Scholar 

  • Murphy AB (2012) Entente territorial: sack and Raffestin on territoriality. Environ Plan D 30(1):159–172. doi:10.1068/d4911

    Article  Google Scholar 

  • Nguyen TTX, Bonetti J, Rogers K, Woodroffe CD (2016) Indicator-based assessment of climate-change impacts on coasts: a review of concepts, methodological approaches and vulnerability indices. Ocean Coast Manag 123:18–43. doi:10.1016/j.ocecoaman.2015.11.022

    Article  Google Scholar 

  • Nogueira Mendes R, Ceia R, Silva T, Rilo A, Guerreiro M, Catalão J, Taborda R, Freitas MC, Andrade A, Melo R, Fortunato AB, Freire P (2012) Remote sensing and intertidal cartography. Contribution of the MorFeed project. In: Proceedings of the “Second Jornadas de Engenharia Hidrográfica”. Instituto Hidrográfico, pp 341–344. ISBN 978-989-705- 035-0 (in Portuguese)

  • Perrow C (2007) The next catastrophe: reducing our vulnerabilities to natural, industrial, and terrorist disasters. Princeton University Press, Princeton

    Google Scholar 

  • Rilo A, Freire P, Ceia R, Mendes RN, Catalão J, Taborda R (2012) Human effects on estuarine shoreline decadal evolution. In: Geophysical research abstracts, vol. 14, EGU2012-10863, EGU General Assembly

  • Rilo A, Tavares AO, Freire P, Santos PP, Zêzere JL (2017) The contribution of historical information to flood risk management in the Tagus estuary. Int J Disaster Risk Reduct. doi:10.1016/j.ijdrr.2017.07.008

    Google Scholar 

  • Rufat S, Tate E, Burton CG, Maroof AS (2015) Social vulnerability to floods: review of case studies and implications for measurement. Int J Disaster Risk Reduct 14:470–486. doi:10.1016/j.ijdrr.2015.09.013

    Article  Google Scholar 

  • Sack R (1981) Territorial bases of power. In: Burnett A, Taylor P (eds) Political studies from spatial perspectives. Wiley, Toronto, pp 53–71

    Google Scholar 

  • Schmidtlein MC, Deutsch RC, Piegorsch WW, Cutter SL (2008) A sensitivity analysis of the social vulnerability index. Risk Anal 28(4):1099–1114. doi:10.1111/j.1539-6924.2008.01072.x

    Article  Google Scholar 

  • Tapsell SM, Penning-Rowsell EC, Tunstall SM, Wilson TL (2002) Vulnerability to flooding: health and social dimensions. Philos Trans R Soc Lond A 360:1511–1525. doi:10.1098/rsta.2002.1013

    Article  Google Scholar 

  • Tate E (2012a) Uncertainty analysis for a social vulnerability index. Ann As Am Geogr 103(3):526–543. doi:10.1080/00045608.2012.700616

    Article  Google Scholar 

  • Tate E (2012b) Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis. Nat Hazards 63:325–347. doi:10.1007/s11069-012-0152-2

    Article  Google Scholar 

  • Tavares AO, Santos PP (2013) Re-scaling risk governance using local appraisal and community involvement. J Risk Res 17(7):923–949. doi:10.1080/13669877.2013.822915

    Article  Google Scholar 

  • Tavares AO, Santos PP, Freire P, Fortunato AB, Rilo A, Sá L (2015) Flooding hazard in the Tagus estuarine area: the challenge of scale in vulnerability assessments. Environ Sci Policy 51:238–255. doi:10.5194/nhess-13-2003-2013

    Article  Google Scholar 

  • UN (2014) World urbanization prospects: the 2014 revision, highlights (ST/ESA/SER.A/352). United Nations, Department of Economic and Social Affairs, Population Division, New York

    Book  Google Scholar 

  • UNISDR (2015) Sendai framework for disaster risk reduction 2015–2030. United Nations Office for Disaster Risk Reduction, Sendai

    Google Scholar 

  • White GF (ed) (1974) Natural hazards. Oxford University Press, London

    Google Scholar 

  • Zêzere JL, Pereira S, Tavares AO, Bateira C, Trigo RM, Quaresma I, Santos PP, Santos M, Verde J (2014) DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal. Nat Hazards 72(2):503–532. doi:10.1007/s11069-013-1018-y

    Article  Google Scholar 

  • Zhou Y, Li N, Wu W, Wu J, Shi P (2014) Local spatial and temporal factors influencing population and societal vulnerability to natural disasters. Risk Anal 34(4):614–639. doi:10.1111/risa.12193

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Foundation for Science and Technology (FCT) through the research projects “MOLINES - Modeling floods in estuaries: From the hazard to critical management” (PTDC/AAG-MAA/2811/2012) and “FORLAND - Hydrogeomorphologic risk in Portugal: driving forces and applications for land use planning (PTDC/ATPGEO/1660/2014).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pinto Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, P.P., Tavares, A.O., Freire, P. et al. Estuarine flooding in urban areas: enhancing vulnerability assessment. Nat Hazards 93 (Suppl 1), 77–95 (2018). https://doi.org/10.1007/s11069-017-3067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-3067-0

Keywords

Navigation