Skip to main content

Spectral analysis of climate cycles to predict rainfall induced landslides in the western Mediterranean (Majorca, Spain)

Abstract

In the present work, spectral analysis has been applied to determine the presence and statistical significance of climate cycles in long-term data series from different rainfall and gauging stations located in the Tramuntana Range, in the north-western sector of the island of Majorca. Climate signals recorded previously in the Mediterranean region have been identified: the ENSO, NAO, HALE, QBO and Sun Spot cycles as well as others related to solar activity; the most powerful signals correspond to the annual cycle, followed by the 6-month and NAO cycles. The incorporation of data derived from gauging stations contributes to better climate signal detection as local and exceptional influences are eliminated. Simulations have been performed for each rainfall/gauging station, using the most significant climate cycles obtained by means of the power spectrum. A good correlation between rainfall/flow values and simulated cycles has been obtained. The NAO and ENSO cycles are the most influential in the rainy periods, and specifically the NAO cycle, where a good correlation between episodes of high rainfall/flow and high values of ANAOI can be observed. At a second stage, landslides dated and recorded in the Tramuntana Range since 1954 (174 events) have been correlated with the simulated cycles obtaining good results, as the landslide events match rainfall peaks well. The correlation for the past decade (since 2005), when a detailed landslide inventory is available, also reveals a coincidence between landslide events and climate cycles, and specifically NAO and ENSO cycles. That is the case of the period 2008–2010, when numerous mass movements took place, and when the largest movement of the inventory was recorded. Results show a potential rainy period in the Tramuntana Range for the coming years (with maximum values around year 2021), when conditions similar to those related to the 2008–2010 event could take place again. The methodology presented in this work can contribute to the prediction of temporal, extreme hydrological events in order to design short-/medium-term mitigation strategies on a regional scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Blackman RB, Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Bell Syst Tech J 37:185–282

    Article  Google Scholar 

  2. Bras RL, Rodríguez-Iturbe I (1985) Random functions and hydrology. Addison-Wesley, Reading, p 559

    Google Scholar 

  3. Burg JP (1972) The relation between maximum entropy spectra and maximum likelihood spectra. Geophysics 37:375–376

    Article  Google Scholar 

  4. Capparelli G, Versace P (2011) FLaIR and SUSHI: two mathematical models for early warning of landslides induced by rainfall. Landslides 8:67

    Article  Google Scholar 

  5. Coe JA, Godt JW (2012) Review of approaches for assessing the impact of climate change on landslide hazards. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and engineered slopes, protecting society through improved understanding: proceedings 11th international and 2nd North American symposium on landslides and engineered slopes, Banff, Canada 1. Taylor & Francis, London, pp 371–377

  6. Corominas J (2006) El clima y sus consecuencias sobre la actividad de los movimientos de ladera en España. Cuaternario y Geomorfología 20:89–113

    Google Scholar 

  7. Crozier MJ (2010) Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124:260–267

    Article  Google Scholar 

  8. Currie RG, Wyatt T, O’Brien DP (1993) Deterministic signals in European fish catches, wine harvest and sea level, and further experiments. Int J Climatol 13:665–687

    Article  Google Scholar 

  9. Dikau R, Schrott L (1999) The temporal stability and activity of landslide in Europe with respect to climatic change (TESLEC): main objectives and results. Geomorphology 30:1–12

    Article  Google Scholar 

  10. Flageollet JC, Maquaire O, Martin B, Weber D (1999) Landslides and climatic conditions in the Barcelonnette and Vars basins (Southern French Alps, France). Geomorphology 30:65–78

    Article  Google Scholar 

  11. Fleming SW, Quilty E (2006) Aquifer responses to El Niño-Sothern Oscillation, Southwest British Columbia. Ground Water 44:595–599

    Article  Google Scholar 

  12. Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252

    Article  Google Scholar 

  13. Gelabert B (2002) Las Fonts Ufanes (Mallorca): funcionamiento hidráulico de una surgencia kárstica. Boletín de la Sociedad Española de Espeleología y Ciencias del Karst 3:46–55

    Google Scholar 

  14. Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Clim 22:1593–1615

    Article  Google Scholar 

  15. Guzzetti F, Peruccacci S, Rossi M, Colin PS (2008) The rainfall intensity- duration control of shallow landslides and debris flows: an update. Landslide 5:3–17

    Article  Google Scholar 

  16. Hoyt DV, Schatten KH (1997) The role of the Sun in climate change. Oxford University Press, Oxford, p 279

    Google Scholar 

  17. Huang J, Ju NP, Liao YJ, Liu DD (2015) Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method. Nat Hazards Earth Syst Sci 15:2715–2723

    Article  Google Scholar 

  18. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation, regional temperatures and precipitation. Nature 269:676–679

    Google Scholar 

  19. Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco, p 525

    Google Scholar 

  20. Karagiannidis AF, Bloutsos AA, Maheras SachsamanoglouC (2007) Some statistical characteristics of precipitation in Europe. Theor Appl Climatol 91:193–204

    Article  Google Scholar 

  21. Knippertz P (2003) Tropical-extratropical interactions causing precipitation in Northwest Africa: statistical analysis and seasonal variations. Mon Weather Rev 131:3069–3076

    Article  Google Scholar 

  22. Labitzke K, van Loon H (1990) Associations between the 11-year solar cycle, the Quasi-Biennial Oscillation and the atmosphere: a summary of recent work. Philos Trans R Soc Lond 330:577–589

    Article  Google Scholar 

  23. Lamb HH (1977) Climate: past, present and future climatic history and the future, vol 2. Methuen, London

    Google Scholar 

  24. Luque-Espinar JA, Chica-Olmo M, Pardo-Igúzquiza E, García-Soldado MJ (2008) Influence of climatological cycles on hydraulic heads across a Spanish aquifer. J Hydrol 354:33–52

    Article  Google Scholar 

  25. Luque-Espinar JA, Chica-Olmo M, Pardo-Igúzquiza E, Rodríguez Galiano V (2013) Simulación de niveles piezométricos basada en los ciclos climáticos. In: Uría AF (ed) Proceedings X Simposio Nacional de Hidrogeología, Granada, vol 1, pp 815–820

  26. Mateos RM (2002) Slope movements in the Majorca Island (Spain). In: McInnes RG, Jakeways J (eds) Hazard analysis. Instability, planning and management. Seeking sustainable solutions to ground movements problems. Thomas Telford, London, pp 339–346

    Google Scholar 

  27. Mateos RM (2006) Los movimientos de ladera en la Serra de Tramuntana (Mallorca). Caracterización geomecánica y análisis de peligrosidad. PhD. Servicio de Publicaciones de la Universidad Complutense de Madrid. Madrid, p 299

  28. Mateos RM, González C (2009) Los Caminos del Agua en las Islas Baleares. Acuíferos y Manantiales. Published by: Instituto Geológico y Minero de España & Conselleria de Medi Ambient del Govern de les Illes Balears, p 315

  29. Mateos RM, Azañón JM, Morales R, López-Chicano JM (2007) Regional prediction of landslides in the Tramuntana Range (Majorca) using probability analysis of intense rainfall. Zeitschrift für Geomorphology, Nº 51, 3:287–306

  30. Mateos RM, Bermejo M, Hijazo T, Rodríguez-Franco JA, Ferrer M, González de Vallejo LI, Garcia I (2008) Los deslizamientos de la ladera de la margen izquierda del torrente de Fornalutx (Mallorca). Boletín Geológico y Minero 119:443–458

    Google Scholar 

  31. Mateos RM, García-Moreno I, Azañón JM, Tsige M (2010) La avalancha de rocas de Son Cocó (Alaró, Mallorca). Descripción y análisis del movimiento. Boletín Geológico y Minero 121(2):153–168

    Google Scholar 

  32. Mateos RM, García-Moreno I, Azañón JM (2012) Freeze-thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region: the case of the Tramuntana Range (Majorca, Spain). Landslides 9:417–432

    Article  Google Scholar 

  33. Mateos RM, García- Moreno I, Herrera G, Mulas J (2013) Recent mass movements in the Tramuntana Range (Mallorca, Spain). In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, volume 4. Global Environmental Change, pp 27–37

  34. Mateos RM, Garcia-Moreno I, Reichenbach P, Herrera G, Sarro R, Rius J, Aguiló R (2015) Calibration and validation of rockfall modelling at regional scale: application along a roadway in Mallorca (Spain) and organization of its management. Landslides. doi:10.1007/s10346-015-0602-5

    Google Scholar 

  35. Mathew J, Babu DG, Kundu S, Vinod Kumar K, Pant CC (2014) Integrating intensity-duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides 11(4):575–588

    Article  Google Scholar 

  36. Muñoz-Díaz D, Rodrigo FS (2005) Influence of El Nino-Sothern Oscillation on the probability of dry and wet seasons in Spain. Clim Res 30:1–12

    Article  Google Scholar 

  37. NCARS, National Center for Atmospheric Research Staff (2016) The climate data guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based). Retrieved from http://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based. See more at: http://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based#sthash.F0WaOel7.zFyy9CyX.dpuf. Accessed 30 Mar 2016

  38. NOAA, National Oceanic and Atmospheric Administration (2016) Annual Oceanic Niño Index. http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt. Accessed 9 March 2016

  39. Papoulis A (1984) Probability, random variables and stochastic processes. McGraw-Hill, Singapore

    Google Scholar 

  40. Pardo-Igúzquiza E, Rodriguez-Tovar FJ (2004) POWGRAF2: a computer program for graphical spectral analysis. Comput Geosci 30(5):533–542

    Article  Google Scholar 

  41. Pardo-Igúzquiza E, Rodríguez-Tovar FJ (2012) Spectral and cross-spectral analysis of uneven time series with the smoothed Lomb–Scargle periodogram and Monte Carlo evaluation of statistical significance. Comput Geosci 49:207–216

    Article  Google Scholar 

  42. Pardo-Igúzquiza E, Chica-Olmo M, Rodríguez-Tovar FJ (1994) CYSTRATI: a computer program for spectral analysis of stratigrafic successions. Comput Geosci 20:511–584

    Article  Google Scholar 

  43. Piciullo L, Gariano SL, Melillo M, Brunetti MT, Peruccacci S, Guzzetti F, Calvello M (2016) Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides. doi:10.1007/s10346-016-0750-2

    Google Scholar 

  44. Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, Castro-Díez Y (2000) An analysis of the variability of the North Atlantic Oscillation in the time and the frequency domains. Int J Climatol 20:1675–1692

    Article  Google Scholar 

  45. Qu B, Gabric AJ, Zhu J, Lin D, Qian F, Zhao M (2012) Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability. Water Sci Eng 5(3):304–315

    Google Scholar 

  46. Rodó X, Baert E, Comin FA (1997) Variations in seasonal rainfall in Southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation. Clim Dyn 13:275–284

    Article  Google Scholar 

  47. Saaroni H, Toseti A, Trigo IF, Vicente-Serrano SM, Yiou P, Ziv B (2012) Large-scale atmospheric circulation driving extreme climate events in the Mediterranean and its related impacts. In: Lionello P (ed) The climate of the Mediterranean region. Elsevier, USA, pp 347–403

    Google Scholar 

  48. Staley DM, Kean JW, Cannon SH, Schmidt KM, Laber JL (2013) Objective definition of rainfall intensity-duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 10:547–562

    Article  Google Scholar 

  49. Stuiver M, Braziunas TF (1989) Atmospheric 14C and century-scale solar oscillations. Nature 338:405–408

    Article  Google Scholar 

  50. Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering threshold. Environ Geol 35:125–130

    Article  Google Scholar 

  51. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):1055–1096

    Article  Google Scholar 

  52. Tramblay Y, El Adlouni S, Servat E (2013) Trends and variability in extreme precipitation indices over Maghreb countries. Nat Hazards Earth Syst Sci 13:3235–3248

    Article  Google Scholar 

  53. Trigo RM, Pozo- Vázquez D, Osborn TJ, Castro- Díez Y, Gámiz-Fortis S, Esteban-Parra J (2004) North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24:925–944

    Article  Google Scholar 

  54. Wieczoreck GF (1996) Landslide triggering mechanisms. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board, National Research Council, Special report, Washington, DC, pp 76–90

  55. Williams GE (1981) Sunspot periods in the late Precambrian glacial climate and solar-planetary relations. Nature 291:624–628

    Article  Google Scholar 

  56. Xoplaki E, Trigo RM, García-Herrera R, Barriopedro D, D’Andrea F, Fischer EM, Gimeno L, Gouveia C, Hernández E, Kuglitsch FG, Mariotti A, Nieto R, Pinto JG, Pozo-Vázquez D, Saaroni H, Toreti A, Trigo IF, Vicente-Serrano SM, Yiou P, Ziv B (2012) Large-scale atmospheric circulation driving extreme climate events in the Mediterranean and its related impacts. In: Lionello P (ed) The climate of the Mediterranean region. Elsevier, USA, pp 347–403

    Chapter  Google Scholar 

  57. Yevjevich V (1972) Stochastic processes in hydrology. Water Resources Publications, Fort Collins, p 276

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 312384. LAMPRE Project. Additionally, this work was partially supported by the Ministerio de Economía y Competitividad of Spain, KARSCLIMA Project CGL2015-71510-R. Special thanks to the Regional Water Agency of the Balearic Islands and especially to their technical team for providing data from gauging stations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Luque-Espinar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luque-Espinar, J.A., Mateos, R.M., García-Moreno, I. et al. Spectral analysis of climate cycles to predict rainfall induced landslides in the western Mediterranean (Majorca, Spain). Nat Hazards 89, 985–1007 (2017). https://doi.org/10.1007/s11069-017-3003-3

Download citation

Keywords

  • Climate cycles
  • Landslides
  • Mediterranean region
  • Prediction
  • Spectral analysis