Community resilience to tsunamis along the Southeastern Pacific: a multivariate approach incorporating physical, environmental, and social indicators

Abstract

Tsunamic events are a frequent hazard to coastal towns. Despite this, the extent to which resilience models can be applied to coastal towns as well as the aspects that should be considered when doing so have not been fully evaluated. There is little information regarding the specific indicators that allow cities to better cope and adapt to the impacts of tsunamis, and this information is especially scarce for developing countries such as Chile. The main objective of this study is to develop a resilience model to explore the extent to which local characteristics influence the resilience of Chilean coastal communities to tsunami hazards. Accordingly, this study presents the Coastal Community Resilience model (The CORE model) for exploring the adaptive capacity of coastal areas affected by tsunamis. This model was then applied to fourteen coastal villages, distributed within four towns, three communes, and two regions of Chile. Data comprising 21 indicators that address the physical, environmental, and social resilience aspects of the villages were obtained on-site and from governmental and municipality databases; these data were then subjected to multivariate analysis in order to determine which indicators most and least affect resilience and whether indicators affect resilience positively or negatively. Variation in resilience among the villages was explained by similarities and differences in the administrative-political, urban, rural, and indigenous characteristics of the study areas. In addition to these results, we discuss land use planning considerations to build community resilience, and we provide insight into the utility of the resilience model proposed here. Overall, our findings shed light on gaps in planning policies and opportunities for planning coastal resilient communities, particularly for those where data of explicit indicators are scarce like in Chile and other developing countries.

This is a preview of subscription content, access via your institution.

Fig. 1

Source This study. Information about land use and urban structure was collected from the National Forest Corporation (CONAF), local municipalities, and the Ministry of Public Works (MOP). This figure was created in ArcGis

Fig. 2
Fig. 3

References

  1. Ainuddin S, Routray JK (2012) Community resilience framework for an earthquake prone area in Baluchistan. Int J Disaster Risk Reduct 2:25–36. doi:10.1016/j.ijdrr.2012.07.003

    Article  Google Scholar 

  2. Allan P, Bryant M (2011) Resilience as a framework for urbanism and recovery. J Landsc Archit. doi:10.1080/18626033.2011.9723453

    Google Scholar 

  3. Allan P, Bryant M, Wirsching C, Garcia D, Rodriguez MT (2013) The influence of urban morphology on the resilience of cities following an earthquake. J Urban Des 18:242–262. doi:10.1080/13574809.2013.772881

    Article  Google Scholar 

  4. Anderson M (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  5. Bean E, Dukes M (2015) Effect of amendment type and incorporation depth on runoff from compacted sandy soils. J Irrig Drain Eng 141:04014074. doi:10.1061/(ASCE)IR.1943-4774.0000840

    Article  Google Scholar 

  6. Beatley T, Newman P (2013) Biophilic cities are sustainable, resilient cities. Sustainability 5:3328–3345. doi:10.3390/su5083328

    Article  Google Scholar 

  7. Brody SD, Peacock WG, Gunn J (2012) Ecological indicators of flood risk along the Gulf of Mexico. Ecol Indic 18:493–500. doi:10.1016/j.ecolind.2012.01.004

    Article  Google Scholar 

  8. Bruneau M, Chang SE, Eguchi RT et al (2003) A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq Spectra 19:733–752

    Article  Google Scholar 

  9. Carter MR (2007) Learning from asset-based approaches to poverty. In: Moser C (ed) Reducing global poverty. The case for asset accumulation. The Brookings Institution, Washington DC, pp 51–61

    Google Scholar 

  10. CASEN (2009) Encuesta de Caracterización Socioeconómica Nacional. Ministerio de Planificación (MIDEPLAN), Santiago

    Google Scholar 

  11. CASEN (2011) Encuesta de Caracterización Socioeconómica Nacional. Ministerio de Desarrollo Social, Santiago

    Google Scholar 

  12. CASEN (2013) Encuesta de Caracterización Socioeconómica Nacional. Ministerio de Desarrollo Social, Santiago

    Google Scholar 

  13. Cervero R, Duncan M (2003) Walking, bicycling, and urban landscapes: evidence from the San Francisco Bay area. Am J Public Health 93:1478–1483

    Article  Google Scholar 

  14. Chile IDE (2014) Infraestructura de Datos Geoespaciales. Ministerio de Bienes Nacionales, Santiago

    Google Scholar 

  15. Chou JS, Ou YC, Cheng MY, Cheng MY, Lee CM (2013) Emergency shelter capacity estimation by earthquake damage analysis. Nat Hazards 65:2031–2061. doi:10.1007/s11069-012-0461-5

    Article  Google Scholar 

  16. Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd, Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  17. CONAF (2006) Sistema de Información Territorial. CONAF, http://sit.conaf.cl/. Accessed Mar 2016

  18. Cutter SL, Barnes L, Berry M, Burton C, Evans E, Tate E, Webb J (2008) A place-based model for understanding community resilience to natural disasters. Glob Environ Change 18:598–606. doi:10.1016/j.gloenvcha.2008.07.013

    Article  Google Scholar 

  19. Cutter SL, Ash KD, Emrich CT (2014) The geographies of community disaster resilience. Glob Environ Change 29:65–77. doi:10.1016/j.gloenvcha.2014.08.005

    Article  Google Scholar 

  20. Davoudi S, Shaw K, Haider LJ et al (2012) Resilience: a bridging concept or a dead end? “Reframing” resilience: challenges for planning theory and practice interacting traps: resilience assessment of a pasture management system in Northern Afghanistan urban resilience: what does it mean in planning practice? Resilience as a useful concept for climate change adaptation? The politics of resilience for planning: a cautionary note. Plan Theory Pract 13:299–333. doi:10.1080/14649357.2012.677124

    Article  Google Scholar 

  21. Forbes K, Broadhead J (2007) The role of coastal forests in the mitigation of tsunami impacts. FAO, Bangkok

    Google Scholar 

  22. Glandon DM (2015) Measuring resilience is not enough; we must apply the research. Researchers and practitioners need a common language to make this happen. Ecol Soc. doi:10.5751/es-07576-200227

    Google Scholar 

  23. Herrmann G (2015) Urban planning and Tsunami impact mitigation in Chile after February 27, 2010. Nat Hazards 79:1591–1620. doi:10.1007/s11069-015-1914-4

    Article  Google Scholar 

  24. INE (2002) Census 2002. Instituto Nacional de Estadísticas, Santiago

    Google Scholar 

  25. Ingram JC, Khazai B (2012) Incorporating ecology and natural resource management into coastal disaster risk reduction. In: Ingram JC, Declerck F, Rio CRD (eds) Integrating ecology and poverty reduction. Springer, New York, pp 369–392

    Chapter  Google Scholar 

  26. ISDR (2005) Hyogo framework for action 2005–2015: building the resilience of nations and communities to disasters. International Strategy for Disaster Reduction (ISDR), Hyogo

    Google Scholar 

  27. Ishikawa M (2002) Landscape planning for a safe city. Ann Geophys 45:833–841. doi:10.4401/ag-3544

    Google Scholar 

  28. Ishimoto H (2000) Study on evaluation method for open space’s characteristics under earthquake disaster. In: Proceeding of annual conference of the institute of social safety science

  29. Jaramillo E, Dugan JE, Hubbard DM et al (2012) Ecological implications of extreme events: footprints of the 2010 earthquake along the Chilean Coast. PLoS ONE 7:1–8. doi:10.1371/journal.pone.0035348

    Article  Google Scholar 

  30. Lagos M, Gutiérrez D (2005) Simulación del tsunami de 1960 en un estuario del centro-sur de Chile. Revista de Geografía Norte Grande 33:5–18

    Google Scholar 

  31. Lorito S, Romano F, Atzori S et al (2011) Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake. Nat Geosci 4:173–177. doi:10.1038/NGEO1073

    Article  Google Scholar 

  32. Martínez C, Rojas O, Aránguiz R, Belmonte A, Altamirano Á, Flores P (2012) Riesgo de tsunami en caleta Tubul, Región del Biobío: escenarios extremos y transformaciones territoriales posterremoto. Revista de Geografía Norte Grande 53:85–106

    Article  Google Scholar 

  33. Mascarenhas A, Jayakumar S (2007) An environmental perspective of the post-tsunami scenario along the coast of Tamil Nadu, India: role of sand dunes and forests. J Environ Manag 89:24–34. doi:10.1016/j.jenvman.2007.01.053

    Article  Google Scholar 

  34. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington DC

    Google Scholar 

  35. Ministerio Del Interior (2010) Informe del Ministerio del Interior de Chile (report of the ministry of the interior). Ministerio del Interior, Santiago

    Google Scholar 

  36. Moser C (2007) Reducing global poverty. The case for asset accumulation. The Brookings Institution, Washington DC

    Google Scholar 

  37. Moser C (2009) Ordinary families, extraordinary lives. Assets and poverty reduction in Guayaquil, 1978–2004. Brookings Press, Washington DC

    Google Scholar 

  38. Municipalidad de Mariquina (2015) Municipalidad de Mariquina. Región de Los Ríos, Chile

    Google Scholar 

  39. Norris F, Stevens S, Pfefferbaum B, Wyche K, Pfefferbaum R (2008) Community resilience as a metaphor, theory, set of capacities and strategy for disaster readiness. Community Psychol 41:127–150. doi:10.1007/s10464-007-9156-6

    Article  Google Scholar 

  40. ONEMI (2015) National emergency office. Santiago, Gobierno de Chile. http://www.onemi.cl. Accessed Mar 2016

  41. Peña-Cortés F, Ailio C, Gutiérrez P et al (2008) Morfología y dinámica dunaria en el borde costero de la Región de La Araucanía en Chile. Antecedentes para la conservación y gestión territorial. Revista de Geografía Norte Grande 41:63–80

    Google Scholar 

  42. Quinn G, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  43. Renschler CS, Fraize AE, Arendt LA, Cimellaro GP, Reinhorn AM, Bruneau M (2010) A framework for defining and measuring resilience at the Community Scale: the PEOPLES resilience framework. U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, Maryland

    Google Scholar 

  44. Resilience Alliance (2010) Assessing resilience in social-ecological systems: workbook for Practicioners. Version 2.0. http://www.resalliance.org/resilience-assessment. Accessed May 2016

  45. Rueda S (2007) Plan espacial de indicadores de Sostenibilidad Ambiental de la Actividad Urbanística de Sevilla. Departamento de Urbanismo, Ayuntamiento de Sevilla, Sevilla

    Google Scholar 

  46. Sepúlveda RD, Valdivia N (2016) Localised effects of a mega-disturbance: spatiotemporal responses of intertidal sandy shore communities to the 2010 Chilean earthquake. PLOS ONE 11:e0157910. doi:10.1371/journal.pone.0157910

    Article  Google Scholar 

  47. Sepúlveda RD, Valdivia N (2017) Macrobenthic community changes of intertidal sandy shores after a mega-disturbance. Estuaries Coasts 40:493–501. doi:10.1007/s12237-016-0158-1

    Article  Google Scholar 

  48. SHOA (2000) El Maremoto del 22 de mayo de 1960 en las costas de Chile. SHOA, Santiago

    Google Scholar 

  49. The Sphere Project (2004) Humanitarian charter and minimum standards in disaster response. The Sphere Project, Geneva

    Google Scholar 

  50. Tobin G (1999) Sustainability and community resilience: the holy grail of hazard planning? Environ Hazards 1:13–25

    Google Scholar 

  51. Tumini I, Villagra P, Herrmann G (2016) Evaluating reconstruction effects on urban resilience: a comparison between two Chilean prone cities. Nat Hazards 85:1363–1392. doi:10.1007/s11069-016-2630-4

    Article  Google Scholar 

  52. UNISDR (2012) Investing in resilience: accelerating the implementation of the hyogo framework for action in the Americas. Gobierno de Chile. UNISDR, Organization of American State, Santiago

    Google Scholar 

  53. UNISDR (2015) Sendai framework for disaster risk reduction 2015–2030. UNISDR, Sendai

    Google Scholar 

  54. Villagra P, Rojas C, Ohno R, Xue M, Gómez K (2014) A GIS-base exploration of the relationships between open space systems and urban form for the adaptive capacity of cities after an earthquake: the cases of two Chilean cities. Appl Geogr 48:64–78. doi:10.1016/j.apgeog.2014.01.010

    Article  Google Scholar 

  55. Villagra P, Herrmann G, Quintana C, Sepúlveda RD (2016) Resilience thinking and urban planning in a coastal environment at risks of tsunamis: the case study of Mehuín, Chile. Revista de Geografía Norte Grande 64:63–82

    Article  Google Scholar 

  56. Walker B, Salt D (2006) Resilience thinking: sustaining ecosystems and people in a changing world. Island Press, Washington DC

    Google Scholar 

  57. Wamsler C (2007) Managing urban disaster risk. Analysis and adaptation frameworks for integrated settlement development programming for the urban poor. Doctoral Thesis, Lund University, Lund, Sweden

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paula Villagra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villagra, P., Herrmann, M.G., Quintana, C. et al. Community resilience to tsunamis along the Southeastern Pacific: a multivariate approach incorporating physical, environmental, and social indicators. Nat Hazards 88, 1087–1111 (2017). https://doi.org/10.1007/s11069-017-2908-1

Download citation

Keywords

  • Resilience
  • Tsunami
  • Indicators
  • Coastal communities