Skip to main content

Mapping inundation probability due to increasing sea level rise along El Puerto de Santa María (SW Spain)

Abstract

Global sea levels have risen through the twentieth and twenty-first centuries. This rise will almost certainly continue and probably accelerate during the rest of the twenty-first century, albeit there is strong disagreement about the range of future sea level rise due to uncertainties regarding scenarios and emission of greenhouse gasses. Although the impacts of sea level rise are diverse, inundation during high tides is one of the most obvious and immediate consequences. A probabilistic methodology for mapping the inundation hazard because of sea level rise has been applied to the coast of El Puerto de Santa María in the province of Cádiz in southwest Spain. This methodology involves a step forward since represents the full range of probabilities, associated with each scenario of sea level rise considered, and thus offers a more realistic view of the probability of inundation in each area. Results show large differences in the spatial distribution of probable inundation in urban areas and wetlands leading to different consequences for management actions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aguilar FJ, Mills JP, Delgado J, Aguilar MA, Negreiros JG, Pérez JL (2010) Modelling vertical error in LiDAR-derived digital elevation models. J Photogramm Remote Sens 65:103–110

    Article  Google Scholar 

  2. Barroca B, Bernardara P, Mouchel JM, Hubert G (2006) Indicators for identification of urban flooding vulnerability. Nat Hazards Earth Syst Sci 6:553–561

    Article  Google Scholar 

  3. Benavente J, Del Río L, Gracia FJ, Martínez-del-Pozo JA (2006) Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain). Cont Shelf Res 26:1061–1076

    Article  Google Scholar 

  4. Bruno M, Tejedor L (1996) Niveles del mar en la Bahía de Cádiz. In: Barragán JM (ed) Estudios para la ordenación, planificación y gestión integrada de las zonas húmedas de la Bahía de Cádiz. Oikos-tau, Barcelona, p 185–213

  5. Bruun P (1962) Sea level rise as a cause of shore erosion. J Waterways Harb Div Proc Am Soc Civ Eng 88:117–130

    Google Scholar 

  6. Burbridge P (2011) Global change and the coastal challenge. In: CoastNet (ed) Littoral (2010) adapting to global change at the coast: leadership, innovation and investment. EDP Sciences, London. doi:10.1051/litt/(2011)00004

    Google Scholar 

  7. Carrero R, Navas F, Malvárez G, Guisado Pintado E (2014) Artificial intelligence-based models to simulate land-use change around an estuary. J Coast Res 66:414–419

    Article  Google Scholar 

  8. Cazenave A, Lombard A, Llovel W (2008) Present-day sea level rise: a synthesis. Comptes Rendus Geosci 340:761–770

    Article  Google Scholar 

  9. CCSP (2009) Coastal sensitivity to sea-level rise: a focus on the mid-Atlantic region. U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

  10. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602

    Article  Google Scholar 

  11. Cooper HM, Chen Q (2013) Incorporating uncertainty of future sea-level rise estimates into vulnerability assessment: a case study in Kahului, Maui. Clim Change 121(4):635–647

    Article  Google Scholar 

  12. Costanza R, Pérez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K (2008) The value of coastal wetlands for hurricane protection. Ambio 37(4):241–248

    Article  Google Scholar 

  13. Cutter SL (1996) Vulnerability to environmental hazards. Prog Hum Geogr 20:529–539

    Article  Google Scholar 

  14. Dasgupta S, LaPlante B, Meisner C, Wheeler D, Yan J (2007) The impact of sea level rise on developing countries: a comparative analysis. In: World Bank Policy Research Working Paper 4136

  15. European Environmental Agency (2010) Methods for assessing current and future coastal vulnerability to sea level rise. European Environmental Agency, Copenhagen

    Google Scholar 

  16. FitzGerald D, Fenster M, Argow B, Buynevich I (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647

    Article  Google Scholar 

  17. Fraile-Jurado P (2011) Análisis de las problemáticas asociadas a la espacialización, evolución y representación de niveles del mar presentes y futuros en Andalucía. Universidad de Sevilla, Seville

    Google Scholar 

  18. Fraile-Jurado P, Ojeda-Zújar J (2013) The importance of the vertical accuracy of digital elevation models in gauging inundation by sea level rise along the Valdelagrana beach and marshes, Bay of Cádiz, SW Spain. Geo-Mar Lett 33:225–230

    Article  Google Scholar 

  19. Fraile-Jurado P, Sánchez-Carnero N, Ojeda-Zújar J (2014) Sensibilidad del cálculo de los niveles medios del mar al método y periodo de las series temporales de los mareógrafos en los procesos de inundación: Valdelagrana (Cádiz). Boletín de la Asociación de Geógrafos Españoles 65:59–70

    Google Scholar 

  20. Frihy OE (2003) The Nile delta-Alexandria coast: vulnerability to sea-level rise, consequences and adaptation. Mitig Adapt Strateg Glob Change 8:115–138

    Article  Google Scholar 

  21. García-Gutierrez J, Gonçalves-Seco L, Riquelme-Santos JC (2011) Automatic environmental quality assessment for mixed-land zones using lidar and intelligent techniques. Expert Syst Appl 38:6805–6813

    Article  Google Scholar 

  22. Garrison JR, Mestas-Nuñez AM, Williams JR, Lumb LM (2012) Can beach dune ridges of the Texas Gulf Coast preserve climate signals? Geo-Mar Lett 32:241–250

    Article  Google Scholar 

  23. Gesch DB (2009) Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. J Coast Res 2009:49–58

    Article  Google Scholar 

  24. González CJ, Álvarez O, Reyes J, Acevedo A (2010) Modelado bidimensional de la hidrodinámica y transporte de sedimento en el caño de marea San Pedro (Bahía de Cádiz): implicaciones morfodinámicas. Ciencias Marinas 36:393–412

    Article  Google Scholar 

  25. Gornitz VM, Daniels RC, White TW, Birdwell KR (1994) The development of a coastal risk assessment database: vulnerability to sea-level rise in the US Southeast. J Coast Res Spec Issue 12:327–338

    Google Scholar 

  26. Guisado-Pintado E, Navas F, Malvárez G (2016) Ecosystem services and their benefits as coastal protection in highly urbanised environments. J Coast Res 75:1097–1101

    Article  Google Scholar 

  27. Hollenstein K (2005) Reconsidering the risk assessment concept: standardizing the impact description as a building block for vulnerability assessment. Nat Hazards Earth Syst Sci 5:301–307

    Article  Google Scholar 

  28. Hunter J (2012) A simple technique for estimating an allowance for uncertain sea-level rise. Clim Change 113:239–252

    Article  Google Scholar 

  29. IPCC (2007) Climate Change 2007: The Physical Science Basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, NY, p 996

  30. IPCC (2013) Climate change 2013: The Physical Science Basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, NY, p 1535

  31. Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Fagherazzi S (2016) Overestimation of marsh vulnerability to sea level rise. Nat Clim Change 6(3):253–260

    Article  Google Scholar 

  32. Leatherman SP (2011) Hurricane wind damage mitigation: research and outlook. Nat Hazards Rev 12:202–206

    Article  Google Scholar 

  33. Lentz EE, Thieler ER, Plant NG, Stippa SR, Horton RM, Gesch DB (2016) Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat Clim Change. doi:10.1038/nclimate2957

    Google Scholar 

  34. Marfai MA, King L (2008) Potential vulnerability implications of coastal inundation due to sea level rise for the coastal zone of Semarang city, Indonesia. Env Geol 54:1235–1245

    Article  Google Scholar 

  35. National Research Council (2010) Advancing the science of climate change. National Research Council, National Academies Press, Washington DC, p 504

    Google Scholar 

  36. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520

    Article  Google Scholar 

  37. Nicholls RJ, Hoozemans FM, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob Env Change 9:69–87

    Article  Google Scholar 

  38. Pe’eri S, Long B (2011) LIDAR technology applied in coastal studies and management. J Coast Res Spec Issue 62:1–5

    Article  Google Scholar 

  39. Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–1343

    Article  Google Scholar 

  40. Poulter B, Halpin PN (2008) Raster modelling of coastal flooding from sea-level rise. Int J Geogr Inf Sci 22(2):167–182

    Article  Google Scholar 

  41. Pugh D (2004) Changing sea levels: effects of tides, weather and climate. Cambridge University Press, Cambridge

    Google Scholar 

  42. Purvis MJ, Bates PD, Hayes CM (2008) A probabilistic methodology to estimate future coastal flood risk due to sea level rise. Coast Eng 55:1062–1073

    Article  Google Scholar 

  43. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 5810:368–370

    Article  Google Scholar 

  44. Rowley RJ, Kostelnick JC, Braaten D, Li X, Meisel J (2007) Risk of rising sea level to population and land area. EOS Trans Am Geophys Union 88:105–116

    Article  Google Scholar 

  45. Smith K (2013) Environmental hazards: assessing risk and reducing disaster. Routledge, Abingdon, New York

    Google Scholar 

  46. Sriver RL, Urban NM, Olson R, Keller K (2012) Toward a physically plausible upper bound of sea-level rise projections. Clim Change 115:893–902

    Article  Google Scholar 

  47. Sterr H (2008) Assessment of vulnerability and adaptation to sea-level rise for the coastal zone of Germany. J Coast Res 24:380–393

    Article  Google Scholar 

  48. Timmerman P (1981) Vulnerability resilience and collapse of society. A review of models and possible climatic applications. Institute for Environmental Studies, University of Toronto, Toronto

    Google Scholar 

  49. Titus JG, Hudgens DE (2011) The likelihood of shore protection along the Atlantic coast of the United States: volume 1: Mid-Atlantic. US Environmental Protection Agency, Washington

    Google Scholar 

  50. Titus JG, Narayanan VK (1995) The probability of sea level rise. US Environmental Protection Agency, Washington DC

    Google Scholar 

  51. Titus JG, Richman C (2001) Maps of lands vulnerable to sea level rise: modeled elevations along the U.S. Atlantic and Gulf coasts. Clim Res 18:205–228

    Article  Google Scholar 

  52. Titus JG, Hudgens DE, Trescott DL, Craghan M, Nuckols WH, Hershner CH, Kassakian JM, Linn CJ, Merritt PG, McCue TM, O’Connell JF, Tanski J, Wang J (2009) State and local governments plan for development of most land vulnerable to rising sea level along the U.S. Atlantic coast. Environ Res Lett 4:1–7

    Article  Google Scholar 

  53. Vafeidis AT, Nicholls RJ, McFadden L, Tol RS, Hinkel J, Spencer T, Klein RJ (2008) A new global coastal database for impact and vulnerability analysis to sea-level rise. J Coast Res 24:917–924

    Article  Google Scholar 

  54. Werner AD, Simmons CT (2009) Impact of sea level rise on sea water intrusion in coastal aquifers. Ground Water 47:197–204

    Article  Google Scholar 

  55. Wu SY, Yarnal B, Fisher A (2002) Vulnerability of coastal communities to sea-level rise: a case study of Cape May County, New Jersey, USA. Clim Res 22:255–270

    Article  Google Scholar 

  56. Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea level rise on the northeast coast of the United States. Nat Geosci 2:262–266

    Article  Google Scholar 

  57. Zhang K (2011) Analysis of non-linear inundation from sea-level rise using LIDAR data: a case study for South Florida. Clim Change 106:537–565

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Ministerio de Economía y Competitividad (Grant No. CSO2010-15807).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo Fraile-Jurado.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fraile-Jurado, P., Álvarez-Francoso, J.I., Guisado-Pintado, E. et al. Mapping inundation probability due to increasing sea level rise along El Puerto de Santa María (SW Spain). Nat Hazards 87, 581–598 (2017). https://doi.org/10.1007/s11069-017-2782-x

Download citation

Keywords

  • Sea level rise
  • Coastal inundation
  • Coastal hazard
  • Digital elevation model