Advertisement

Natural Hazards

, Volume 87, Issue 1, pp 323–343 | Cite as

Characterizing land displacement in complex hydrogeological and geological settings: a case study in the Beijing Plain, China

  • Yongyong Li
  • Huili Gong
  • Lin ZhuEmail author
  • Xiaojuan Li
  • Rong Wang
  • Gaoxuan Guo
Original Paper

Abstract

Characterization of land displacement induced by long-term overexploitation of groundwater is necessary to ensure sustainable water supply in Beijing, China. The northern part of the Beijing Plain is an important water source area and is also designed for groundwater recharge from South-to-North Water Diversion Project. We aim to depict the process of characterizing land displacement under complex hydrogeological and geological context in the region using remote sensing and geographic information system. Interferometric synthetic aperture radar time-series analysis was used to detect land displacement from 2003 to 2010. Statistic linear regression equations between groundwater level and land displacement were built based on linear consolidation principle. The spatial difference of Pearson correlation coefficient (R) and slope (k) were discriminated to quantify the response of land displacement to groundwater level change. The results show that there are two major displacement cones with annual rates up to −40 and −24 mm year−1. R and k had a negative and positive correlation with increasing land displacement, respectively. A larger R reflects that the groundwater level has a closer relation with the occurrence of land displacement. The weak correlation is due to the delay in the propagation of the pressure drawdown in the fine-sediment layers or lens from the pumped aquifers where the pressure is measured. Thick compressible layer has more potential for land displacement. Results of this study are necessary to clarify the land displacement characteristics, to make full use of abundant spatial–temporal dataset, and ultimately to support hazard prevention and mitigation decisions.

Keywords

Land displacement Interferometric synthetic aperture radar Pearson correlation coefficient Groundwater level Compressible layer thickness 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41130744, 41171335 and 41201420), and the National Program on Key Basic Research Project (973 Program) (Grant No. 2012CB723403), and the Beijing Science and Technology Program (Z131100005613022). We thank all the anonymous reviewers for their helpful suggestions on the quality improvement of our paper.

References

  1. Amighpey M, Arabi S (2016) Studying land displacement in Yazd province, Iran, by integration of InSAR and levelling measurements. Remote Sens Appl Soc Environ 4:1–8. doi: 10.1016/j.rsase.2016.04.001 Google Scholar
  2. Ao M, Wang C, Xie R, Zhang X, Hu J, Du Y (2015) Monitoring the land displacement with persistent scatterer interferometry in Nansha District, Guangdong, China. Nat Hazards 75(3):2947–2964. doi: 10.1007/s11069-014-1471-2 CrossRefGoogle Scholar
  3. Bonì R, Herrera G, Meisina C, Notti D, Béjar-Pizarro M (2015) Twenty-year advanced DInSAR analysis of severe land displacement: the Alto Guadalentín Basin (Spain) case study. Eng Geol 198:40–52. doi: 10.1016/j.enggeo.2015.08.014 CrossRefGoogle Scholar
  4. Bonì R, Cigna F, Bricker S, Meisina C, McCormack H (2016) Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data. J Hydrol 540:835–849. doi: 10.1016/j.jhydrol.2016.06.068 CrossRefGoogle Scholar
  5. Bürgmann R, Hilley G, Ferretti A, Novali F (2006) Resolving vertical tectonics in the San Francisco bay area from permanent scatterer InSAR and GPS analysis. Geology 34(3):221–224. doi: 10.1130/G22064.1 CrossRefGoogle Scholar
  6. Castellazzi P, Arroyodomínguez N, Martel R et al (2016) Land displacement in major cities of Central Mexico: interpreting InSAR-derived land displacement mapping with hydrogeological data. Int J Appl Earth Obs 47:102–111. doi: 10.1016/j.jag.2015.12.002 CrossRefGoogle Scholar
  7. Chen C, Pei S, Jiao J (2003) Land displacement caused by groundwater exploitation in Suzhou City, China. Hydrogeol J 11(2):275–287. doi: 10.1007/s10040-002-0225-5 CrossRefGoogle Scholar
  8. Chen B, Gong H, Li X, Lei K, Zhang Y, Li J, Gu Z, Dang Y (2011) Spatial–temporal characteristics of land displacement corresponding to dynamic groundwater funnel in Beijing Municipality, China. Chin Geogr Sci 21(6):753–764. doi: 10.1007/s11769-011-0509-6 CrossRefGoogle Scholar
  9. Chen B, Gong H, Li X, Lei K, Gao M, Zhou C (2015) Spatial–temporal evolution patterns of land displacement with different situation of space utilization. Nat Hazards 77(3):1765–1783. doi: 10.1007/s11069-015-1674-1 CrossRefGoogle Scholar
  10. Chen M, Tomás R, Li Z, Motagh M, Li T, Hu L, Gong H, Li X, Yu J, Gong X (2016) Imaging land displacement induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sens Basel 8(6):468. doi: 10.3390/rs8060468 CrossRefGoogle Scholar
  11. Chowdhury TA, Thiel C, Schmullius C, Stelmaszczukgórska M (2013) Polarimetric parameters for growing stock volume estimation using ALOS PALSAR L-band data over Siberian forests. Remote Sens Basel 5(11):5725–5756. doi: 10.3390/rs5115725 CrossRefGoogle Scholar
  12. Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE T Geosci Remote 36(3):813–821. doi: 10.1109/36.673674 CrossRefGoogle Scholar
  13. Erban LE, Gorelick SM, Zebker HA, Fendorf S (2013) Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land displacement. Proc Natl Acad Sci USA 110(34):13751–13756. doi: 10.1073/pnas.1300503110 CrossRefGoogle Scholar
  14. Erban LE, Gorelick SM, Zebker HA (2014) Groundwater extraction, land displacement, and sea-level rise in the Mekong Delta, Vietnam. Environ Res Lett. doi: 10.1088/1748-9326/9/8/084010 Google Scholar
  15. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20. doi: 10.1109/36.898661 CrossRefGoogle Scholar
  16. Ferretti A, Novali F, Bürgmann R, Hilley G, Prati C (2004) InSAR permanent scatterer analysis reveals ups and downs in San Francisco Bay Area. EOS Trans AGU 85(34):317–324. doi: 10.1029/2004EO340002 CrossRefGoogle Scholar
  17. Galloway DL, Hudnut KW, Ingebritsen SE, Phillips SP, Peltzer G, Rogez F et al (1998) Detection of aquifer system compaction and land displacement using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California Water. Resour Res 34(10):2573–2585. doi: 10.1029/98WR01285 CrossRefGoogle Scholar
  18. Gao M, Gong H, Chen B et al (2016) InSAR time-series investigation of long-term ground displacement at Beijing Capital International Airport, China. Tectonophysics. doi: 10.1016/j.tecto.2016.10.016 Google Scholar
  19. Gong H, Zhang Y, Li X, Lu X, Chen B, Gu Z (2009) Study of land displacement in Beijing based on permanent scatterers radar interferometry. Prog Nat Sci 19(11):1261–1266. doi: 10.3321/j.issn:1002-008X.2009.11.015 Google Scholar
  20. Heleno SIN, Oliveira LGS, Henriques MJ et al (2011) Persistent scatterers interferometry detects and measures ground displacement in Lisbon. Remote Sens Environ 115(8):2152–2167. doi: 10.1016/j.rse.2011.04.021 CrossRefGoogle Scholar
  21. Higgins S, Overeem I, Tanaka A, Syvitski JPM (2013) Land displacement at aquaculture facilities in the Yellow River Delta, China. Geophys Res Lett 40(15):3898–3902. doi: 10.1002/grl.50758 CrossRefGoogle Scholar
  22. Hoffmann J, Zebker HA (2003) Prospecting for horizontal surface displacements in Antelope Valley, California, using satellite radar interferometry. J Geoohys Res 108(F1):665–678. doi: 10.1029/2003JF000055 CrossRefGoogle Scholar
  23. Hoffmann J, Zebker HA, Galloway DL, Amelung F (2001) Seasonal displacement and rebound in Las Vegas valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37(6):1551–1566. doi: 10.1029/2000WR900404 CrossRefGoogle Scholar
  24. Hoffmann J, Leake SA, Galloway DL, Wilson AM (2003) MODFLOW-2000 ground-water model–user guide to the displacement and aquifer-system compaction (SUB) package. Center for Integrated Data Analytics Wisconsin Science CenterGoogle Scholar
  25. Ishitsuka K, Tsuji T, Matsuoka T, Nishijima J, Fujimitsu Y (2016) Heterogeneous surface displacement pattern at the Hatchobaru geothermal field inferred from SAR interferometry time-series. Int J Appl Earth Obs 44:95–103. doi: 10.1016/j.jag.2015.07.006 CrossRefGoogle Scholar
  26. Kroon IC, Nguyen BL, Fokker PA, Muntendam-Bos AG, Lange GD (2009) Disentangling shallow and deep processes causing surface movement. Math Geosci 41(41):571–584. doi: 10.1007/s11004-008-9197-x CrossRefGoogle Scholar
  27. Lee S, Park I, Choi JK (2012) Spatial prediction of ground displacement susceptibility using an artificial neural network. Environ Manag 49(2):347–358. doi: 10.1007/s00267-011-9766-5 CrossRefGoogle Scholar
  28. Lei K, Luo Y, Chen B et al (2016) Optimization design of land displacement levelling network of Beijing Plain. Geol China 43(4):1457–1467. doi: 10.12029/gc20160429 Google Scholar
  29. Li D, Liao M, Wang Y (2004) Permanent scatterers radar interferometry. Geomat Inf Sci Wuhan Univ 29(8):664–668. doi: 10.3321/j.issn:1671-8860.2004.08.002 Google Scholar
  30. Liu Y, Huang H (2013) Characterization and mechanism of regional land displacement in the Yellow River Delta. China Nat Hazards 68(2):687–709. doi: 10.1007/s11069-013-0648-4 CrossRefGoogle Scholar
  31. Mahmoudpour M, Khamhechiyan M, Nikudel MR, Ghassemi MR (2015) Numerical simulation and prediction of regional land displacement caused by groundwater exploitation in the Southwest Plain of Tehran, Iran. Eng Geol 201:6–28. doi: 10.1016/j.enggeo.2015.12.004 CrossRefGoogle Scholar
  32. Meisina C, Zucca F, Fossati D, Ceriani M, Allievi J (2006) PS InSAR integrated with geotechnical GIS: some examples from southern Lombardia. In: Geodetic deformation monitoring: from geophysical to engineering roles, vol 131. Springer, Berlin, pp 65–72. doi: 10.1007/978-3-540-38596-7_8
  33. Modoni G, Darini G, Spacagna RL, Saroli M, Russo G, Croce P (2013) Spatial analysis of land displacement induced by groundwater withdrawal. Eng Geol 167(24):59–71. doi: 10.1016/j.enggeo.2013.10.014 CrossRefGoogle Scholar
  34. Mudelsee M (2003) Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math Geol 35(6):651–665. doi: 10.1023/B:MATG.0000002982.52104.02 CrossRefGoogle Scholar
  35. Ng HM, Ge L, Li X, Abidin HZ, Andreas H, Zhang K (2012) Mapping land displacement in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int J Appl Earth Obs 18:232–242. doi: 10.1016/j.jag.2012.01.018 CrossRefGoogle Scholar
  36. Qu F, Zhang Q, Lu Z, Zhao C, Yang C, Zhang J (2014) Land displacement and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens Environ 155:366–376. doi: 10.1016/j.rse.2014.09.008 CrossRefGoogle Scholar
  37. Rahnama MB, Moafi H (2009) Investigation of land displacement due to groundwater withdraw in Rafsanjan plain using GIS software. Arab J Geosci 2(3):241–246. doi: 10.1007/s12517-009-0034-4 CrossRefGoogle Scholar
  38. Raspini F, Loupasakis C, Rozos D, Adam N, Moretti S (2014) Ground displacement phenomena in the Delta municipality region (Northern Greece): geotechnical modeling and validation with persistent scatterer interferometry. Int J Appl Earth Obs 28(5):78–89. doi: 10.1016/j.jag.2013.11.010 CrossRefGoogle Scholar
  39. Riley FS (1970) Analysis of borehole extensometer data from central California. UNESCO Libr 2:423–431Google Scholar
  40. Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W et al (2005) An assessment of the SRTM topographic products, Report No. JPL D-31639. Jet Propulsion Laboratory, Pasadena, CA, USAGoogle Scholar
  41. Samsonov SV, D’Oreye N, González PJ, Tiampo KF, Ertolahti L, Clague JJ (2014) Rapidly accelerating displacement in the Greater Vancouver region from two decades of ERS-ENVISAT-RADARSAT-2 DInSAR measurements. Remote Sens Environ 143(3):180–191. doi: 10.1016/j.rse.2013.12.017 CrossRefGoogle Scholar
  42. Shandas V, Alberti M (2009) Exploring the role of vegetation fragmentation on aquatic conditions: linking upland with riparian areas in Puget Sound lowland streams. Landsc Urban Plan 90(1):66–75. doi: 10.1016/j.landurbplan.2008.10.016 CrossRefGoogle Scholar
  43. Shi C, Zhang D, You L, Li B, Zhang Z, Zhang O (2007) Land displacement as a result of sediment consolidation in the Yellow River Delta. J Coast Res 23(1):173–181. doi: 10.1002/grl.50758 Google Scholar
  44. Stramondo S, Bozzano F, Marra F et al (2008) Displacement induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations. Remote Sens Environ 112(6):3160–3172. doi: 10.1016/j.rse.2008.03.008 CrossRefGoogle Scholar
  45. Syvitski JPM, Kettner AJ, Overeem I et al (2009) Sinking deltas due to human activities. Nat Geosci 2(10):681–686. doi: 10.1038/NGEO629 CrossRefGoogle Scholar
  46. Teatini P, Tosi L, Strozzi T, Carbognin L, Wegmüller U, Rizzetto F (2005) Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens Environ 98(4):403–413. doi: 10.1016/j.rse.2005.08.002 CrossRefGoogle Scholar
  47. Teatini P, Tosi L, Strozzi T, Carbognin L (2012) Resolving land displacement within the Venice lagoon by persistent scatterer SAR interferometry. Phys Chem Earth A/B/C 40(1):72–79. doi: 10.1016/j.pce.2010.01.002 CrossRefGoogle Scholar
  48. Tomas R, Herrera G, Lopez-Sanchez JM, Vicente F, Cuenca A, Mallorquí JJ (2010) Study of the land displacement in Orihuela city (SE Spain) using PSI data: distribution, evolution and correlation with conditioning and triggering factors. Eng Geol 115(1):105–121. doi: 10.1016/j.enggeo.2010.06.004 CrossRefGoogle Scholar
  49. Tomás R, Herrera G, Delgado J, Lopez-Sanchez JM, Mallorquí J, Mulas J (2010) A ground displacement study based on D-InSAR data: calibration of soil parameters and displacement prediction in Murcia city (Spain). Eng Geol 111(1):19–30. doi: 10.1016/j.enggeo.2009.11.004 CrossRefGoogle Scholar
  50. Tosi L, Carbognin L, Teatini P, Strozzi T, Wegmüller U (2002) Evidence of the present relative land stability of Venice, Italy, from land, sea, and space observations. Geophys Res Lett 29:1562–1566. doi: 10.1029/2001GL013211 CrossRefGoogle Scholar
  51. Tosi L, Da Lio Cristina, Strozzi Tazio, Teatini Pietro (2016) Combining L-and X-band SAR interferometry to assess ground displacements in heterogeneous coastal environments: the Po River Delta and Venice Lagoon, Italy. Remote Sens 8(4):308. doi: 10.3390/rs8040308 CrossRefGoogle Scholar
  52. Wan W, Li Y, Zhang J (2010) Development of land displacement in Xi’an in past 50 years. Adv Mater Res 113–116:1199–1207. doi: 10.4028/www.scientific.net/AMR CrossRefGoogle Scholar
  53. Wang M, Li T, Jiang L (2016) Monitoring reclaimed lands displacement in Hong Kong with InSAR technique by persistent and distributed scatterers. Nat Hazards 82(1):1–13. doi: 10.1007/s11069-016-2196-1 CrossRefGoogle Scholar
  54. Wegmüller U, Werner C, Strozzi T, Wiesmann A (2004) Multitemporal interferometric point target analysis. In: Smits P, Bruzzone L (eds) Analysis of multi-temporal remote sensing images. Series Remote Sensing, vol 3. World Sci., Hoboken, pp 136–144Google Scholar
  55. Werner C, Wegmuller U, Wiesmann A, Strozzi T (2003). Interferometric point target analysis with JERS-1 L-band SAR data. In: Proceedings of the 2003 IEEE international geoscience and remote sensing symposium (IGARSS 03), vol 7, pp 21–25. doi: 10.1109/IGARSS.2003.1295515
  56. Xu C, Jiang G, Wang H, Wen Y (2011) Analyzing InSAR results using GIS and its application on the coseismic interpretation of Mw7.9 Wenchuan earthquake. Geo Inf Sci Wuhan Univ 36(4):379–383. doi: 10.13203/j.whugis2011.04.006 Google Scholar
  57. Xu Y, Ma L, Du Y, Shen S (2012) Analysis of urbanisation-induced land displacement in Shanghai. Nat Hazards 63(2):1255–1267. doi: 10.1007/s11069-012-0220-7 CrossRefGoogle Scholar
  58. Xue Y, Zhang Y, Ye S, Li Q (2003) China’s land displacement and several problems need to be solved. Quat Sci 23(6):585–593. doi: 10.3321/j.issn:1001-7410.2003.06.001 Google Scholar
  59. Ye S, Luo Y, Wu J, Yan X et al (2016) Three-dimensional numerical modeling of land displacement in Shanghai, China. Hydrogeol J 24(3):695–709. doi: 10.1007/s10040-016-1382-2 CrossRefGoogle Scholar
  60. Zhang Y, Zhang J, Wu H, Lu Z, Sun G (2011) Monitoring of urban displacement with SAR interferometric point target analysis: a case study in Suzhou, china. Int J Appl Earth Obs 13(5):812–818. doi: 10.1016/j.jag.2011.05.003 CrossRefGoogle Scholar
  61. Zhang Y, Gong H, Gu Z, Wang R, Li X, Zhao W (2014) Characterization of land displacement induced by groundwater withdrawals in the plain of Beijing city, China. Hydrogeol J 22(2):397–409. doi: 10.1007/s10040-013-1069-x CrossRefGoogle Scholar
  62. Zhang J, Huang H, Bi H (2015a) Land displacement in the modern Yellow River Delta based on InSAR time series analysis. Nat Hazards 75(3):2385–2397. doi: 10.1007/s11069-014-1434-7 CrossRefGoogle Scholar
  63. Zhang Y, Wang Z, Xue Y, Wu J (2015b) Visco-elasto-plastic compaction of aquitards due to groundwater withdrawal in Shanghai, China. Environ Earth Sci 74(2):1611–1624. doi: 10.1007/s12665-015-4162-8 CrossRefGoogle Scholar
  64. Zhao C, Zhang Q, Yang C, Zou W (2011) Integration of MODIS data and short baseline subset (SBAS) technique for land displacement monitoring in Datong, China. J Geodyn 52(1):16–23. doi: 10.1016/j.jog.2010.11.004 CrossRefGoogle Scholar
  65. Zhu L, Dai Z, Gong H, Gable C, Teatini P (2015a) Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans. Stoch Env Res Risk A 30(3):1–12. doi: 10.1007/s00477-015-1089-2 Google Scholar
  66. Zhu L, Gong H, Dai Z, Xu T, Su X (2015b) An integrated assessment of the impact of precipitation and groundwater on vegetation growth in arid and semiarid areas. Environ Earth Sci 74(6):5009–5021. doi: 10.1007/s12665-015-4513-5 CrossRefGoogle Scholar
  67. Zhu L, Gong H, Teatini P, Li X, Wang R, Chen B, Dai Z, Teatini P (2015c) Land displacement due to groundwater withdrawal in the northern Beijing Plain, China. Eng Geol 193:243–255. doi: 10.1016/j.enggeo.2015.04.020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Base of the State Key Laboratory of Urban Environmental Process and Digital ModelingCollege of Resource Environment and Tourism, Capital Normal UniversityBeijingChina
  2. 2.Beijing Institute of Hydrogeology and Engineering GeologyBeijingChina
  3. 3.College of Earth ScienceUniversity of Chinese Academy ScienceBeijingChina

Personalised recommendations