Skip to main content

Advertisement

Log in

Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art

  • Review Article
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Developing an accurate model for discharge estimation techniques of the ungauged river basin is a crucial challenge in water resource management especially in under-development regions. This article is a thorough review of the historical improvement stages of this topic to understand previous challenges that faced researchers, the shortfalls of methods and techniques, how researchers prevailed and what deficiencies still require solutions. This revision focuses on data-driven approaches and GIS-based methods that have improved the accuracy of estimation of hydrological variables, considering their advantages and disadvantages. Past studies used artificial intelligence and geo-statistical methods to forecast the runoff at ungauged river basins, and mapping the spatial distribution has been considered in this study. A recommendation for future research on the potential of a hybrid model utilizing both approaches is proposed and described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikary PP, Chandrasekharan H, Chakraborty D, Kamble K (2010) Assessment of groundwater pollution in West Delhi, India using geostatistical approach. Environ Monit Assess 167:599–615

    Article  Google Scholar 

  • Afan HA, El-Shafie A, Yaseen ZM, Hameed MM, Wan Mohtar WHM, Hussain A (2014) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29:1231–1245. doi:10.1007/s11269-014-0870-1

    Article  Google Scholar 

  • Aghakouchak A, Habib E (2010) Application of a conceptual hydrologic model in teaching hydrologic processes. Int J Eng Educ 26:963

    Google Scholar 

  • Ahmadi SH, Sedghamiz A (2007) Geostatistical analysis of spatial and temporal variations of groundwater level. Environ Monit Assess 129:277–294

    Article  Google Scholar 

  • Ahmadi SH, Sedghamiz A (2008) Application and evaluation of kriging and cokriging methods on groundwater depth mapping. Environ Monit Assess 138:357–368

    Article  Google Scholar 

  • Alcazar J, Palau A, Vega-Garcı C (2008) A neural net model for environmental flow estimation at the Ebro River Basin, Spain. J Hydrol 349:44–55

    Article  Google Scholar 

  • Altunkaynak A (2007) Forecasting surface water level fluctuations of Lake Van by artificial neural networks. Water Resour Manag 21:399–408

    Article  Google Scholar 

  • Aqil M, Kita I, Yano A, Nishiyama S (2007) Neural networks for real time catchment flow modeling and prediction. Water Resour Manag 21:1781–1796

    Article  Google Scholar 

  • Aziz K, Rahman A, Fang G, Haddad K, Shrestha S (2010) Design flood estimation for ungauged catchments: Application of artificial neural networks for eastern Australia. In: Proceedings of world environmental and water resources congress 2010, pp 2841–2850

  • Barrow CJ (1998) River basin development planning and management: a critical review. World Dev 26:171–186

    Article  Google Scholar 

  • Beckert A, Wendland H (2001) Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp Sci Technol 5:125–134. doi:10.1016/s1270-9638(00)01087-7

    Article  Google Scholar 

  • Beni G, Wang J (1993) Swarm intelligence in cellular robotic systems. In: Robots and biological systems: towards a new bionics? Springer, Berlin, pp 703–712

  • Besaw LE, Rizzo DM, Bierman PR, Hackett WR (2010) Advances in ungauged streamflow prediction using artificial neural networks. J Hydrol 386:27–37

    Article  Google Scholar 

  • Brath A, Castellarin A, Montanari A (2003) Assessing the reliability of regional depth-duration-frequency equations for gaged and ungaged sites. Water Resour Res 39(12)

  • Braun L, Renner C (1992) Application of a conceptual runoff model in different physiographic regions of Switzerland. Hydrol Sci J 37:217–231

    Article  Google Scholar 

  • Ffolliott PF, DeBano LF (eds) (2003) Riparian areas of the southwestern United States: hydrology, ecology, and management. CRC Press, Boca Raton

    Google Scholar 

  • Burn DH, Boorman DB (1993) Estimation of hydrological parameters at ungauged catchments. J Hydrol 143:429–454

    Article  Google Scholar 

  • Buytaert W, Celleri R, Willems P, Bièvre BD, Wyseure G (2006) Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. J Hydrol 329:413–421

    Article  Google Scholar 

  • Cai X, Yeh TCJ (2008) Quantitative information fusion for hydrological sciences, vol 79. Springer, Berlin

    Book  Google Scholar 

  • Carlon C, Critto A, Marcomini A, Nathanail P (2001) Risk based characterisation of contaminated industrial site using multivariate and geostatistical tools. Environ Pollut 111:417–427

    Article  Google Scholar 

  • Castellarin A (2014) Regional prediction of flow-duration curves using a three-dimensional kriging. J Hydrol 513:179–191

    Article  Google Scholar 

  • Castellarin A, Galeati G, Brandimarte L, Montanari A, Brath A (2004) Regional flow-duration curves: reliability for ungauged basins. Adv Water Resour 27(10):953–965

    Article  Google Scholar 

  • Castiglioni S, Castellarin A, Montanari A (2009) Prediction of low-flow indices in ungauged basins through physiographical space-based interpolation. J Hydrol 378:272–280

    Article  Google Scholar 

  • Chang LC, Chang FJ (2001) Intelligent control for modelling of real-time reservoir operation. Hydrol Process 15:1621–1634

    Article  Google Scholar 

  • Chang FJ, Chang YT (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv Water Resour 29:1–10

    Article  Google Scholar 

  • Chen Y, Takara K, Cluckie I, Smedt FHD (2004) GIS and remote sensing in hydrology, water resources and environment, vol 289. IAHS, Wallingford

    Google Scholar 

  • Chen C-S, Chou FN-F, Chen BP-T (2010) Spatial information-based back-propagation neural network modeling for outflow estimation of ungauged catchment. Water Resour Manag 24:4175–4197

    Article  Google Scholar 

  • Cheng Q, Ko C, Yuan Y, Ge Y, Zhang S (2006) GIS modeling for predicting river runoff volume in ungauged drainages in the Greater Toronto Area, Canada. Comput Geosci 32:1108–1119

    Article  Google Scholar 

  • Chibanga R, Berlamont J, Vandewalle J (2003) Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue river sub-basin. Hydrol Sci J 48:363–379

    Article  Google Scholar 

  • Chokmani K, Ouarda T (2004) Physiographical space-based kriging for regional flood frequency estimation at ungauged sites. Water Resour Res 40:W12514

    Article  Google Scholar 

  • Chu H-J, Lin Y-P, Jang C-S, Chang T-K (2010) Delineating the hazard zone of multiple soil pollutants by multivariate indicator kriging and conditioned Latin hypercube sampling. Geoderma 158:242–251

    Article  Google Scholar 

  • Cobaner M (2011) Evapotranspiration estimation by two different neuro-fuzzy inference systems. J Hydrol 398:292–302

    Article  Google Scholar 

  • Creutin J, Obled C (1982) Objective analyses and mapping techniques for rainfall fields: an objective comparison. Water Resour Res 18:413–431

    Article  Google Scholar 

  • Cutore P, Cristaudo G, Campisano A, Modica C, Cancelliere A, Rossi G (2007) Regional models for the estimation of streamflow series in ungauged basins. Water Resour Manag 21:789–800

    Article  Google Scholar 

  • Dastorani MT, Talebi A, Dastorani M (2010) Using neural networks to predict runoff from ungauged catchments Asian. J Appl Sci 3:399–410

    Google Scholar 

  • Dawson C (2008) Neural network solutions to flood estimation at ungauged sites. Pract Hydroinf 49–57

  • Dawson CW, Abrahart R, Shamseldin A, Wilby R (2006) Flood estimation at ungauged sites using artificial neural networks. J Hydrol 319:391–409

    Article  Google Scholar 

  • deBuys W (2001) Seeing things whole: the essential. John Wesley Powell Island Press, Washington

    Google Scholar 

  • Dingman SL (1981) Elevation: a major influence on the hydrology of New Hampshire and Vermont, USA. Hydrol Sci J 26:399–413

    Google Scholar 

  • Dingman SL, Seely-Reynolds DM, Reynolds RC (1988) Application of kriging to estimating mean annual precipitation in a region of orographic influence. J Am Water Resour As 24:329–339

    Article  Google Scholar 

  • Edossa DC, Babel MS (2011) Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia. Water Resour Manag 25:1759–1773

    Article  Google Scholar 

  • Efron B, Efron B (1982) The jackknife, the bootstrap and other resampling plans, vol 38. Society for industrial and applied mathematics, Philadelphia

    Book  Google Scholar 

  • El-Shafie A, Abdin AE, Noureldin A, Taha MR (2008) Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements. Water Resour Manag 23:2289–2315. doi:10.1007/s11269-008-9382-1

    Article  Google Scholar 

  • El-Shafie A, Abdin AE, Noureldin A, Taha MR (2009) Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements. Water Resour Manag 23:2289–2315

    Article  Google Scholar 

  • El-Shafie A, Jaafer O, Seyed A (2011) Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. Int J Phys Sci 6:2875–2888

    Google Scholar 

  • Fernandez W, Vogel R, Sankarasubramanian A (2000) Regional calibration of a watershed model. Hydrol Sci J 45:689–707

    Article  Google Scholar 

  • Franchini M, Wendling J, Obled C, Todini E (1996) Physical interpretation and sensitivity analysis of the TOPMODEL. J Hydrol 175:293–338

    Article  Google Scholar 

  • Franco C, Soares A, Delgado J (2006) Geostatistical modelling of heavy metal contamination in the topsoil of Guadiamar river margins (S Spain) using a stochastic simulation technique. Geoderma 136:852–864

    Article  Google Scholar 

  • Gaume E (2006) Post flash-flood investigation–methodological note. Floodsite European Research Project, Report D23. 2., 62 pp

  • Ghosh B (1951) Random distances within a rectangle and between two rectangles. Bull Calcutta Math Soc 43(1):17–24

    Google Scholar 

  • Gong G (1986) Cross-validation, the jackknife, and the bootstrap: excess error estimation in forward logistic regression. J Am Stat As 81:108–113

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press on Demand, Oxford

    Google Scholar 

  • Goovaerts P (1999) Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena 34:227–242

    Article  Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

    Article  Google Scholar 

  • Goovaerts P (2001) Geostatistical modelling of uncertainty in soil science. Geoderma 103:3–26

    Article  Google Scholar 

  • Goovaerts P, AvRuskin G, Meliker J, Slotnick M, Jacquez G, Nriagu J (2005) Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour Res 41(7)

  • Gottschalk L (1993) Correlation and covariance of runoff. Stoch Hydrol Hydraul 7:85–101

    Article  Google Scholar 

  • Gottschalk L, Krasovskaia I (1998) Development of grid-related estimates of hydrological variables Report of the WCP-Water Project B 3

  • Hassanpour Kashani M, Montaseri M, Lotfollahi Yaghin MA (2008) Flood estimation at ungauged sites using a new hybrid model. J Appl Sci 8:1744–1749

    Article  Google Scholar 

  • Hooshmand A, Delghandi M, Izadi A, Aali KA (2011) Application of kriging and cokriging in spatial estimation of groundwater quality parameters. Afr J Agric Res 6:3402–3408

    Google Scholar 

  • Huang WC, Yang FT (1998) Streamflow estimation using kriging. Water Resour Res 34:1599–1608

    Article  Google Scholar 

  • Hughes D (1995) Monthly rainfall–runoff models applied to arid and semiarid catchments for water resource estimation purposes. Hydrol Sci J 40:751–769

    Article  Google Scholar 

  • Irani R, Nasimi R (2011) Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir. Expert Syst Appl 38:9862–9866

    Article  Google Scholar 

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  • Jeng DS, Cha DH, Blumenstein M (2003) Application of neural network in civil engineering problems. In: Proceedings of the international conference on advances in the internet, processing, systems and interdisciplinary research (IPSI-2003)

  • Jingyi Z, Hall MJ (2004) Regional flood frequency analysis for the Gan-Ming River basin in China. J Hydrol 296(1):98–117

    Article  Google Scholar 

  • Khatibi R, Ghorbani MA, Kashani MH, Kisi O (2011) Comparison of three artificial intelligence techniques for discharge routing. J Hydrol 403:201–212

    Article  Google Scholar 

  • Kişi Ö (2006) Daily pan evaporation modelling using a neuro-fuzzy computing technique. J Hydrol 329:636–646

    Article  Google Scholar 

  • Koza JR (1994) Genetic programming II: automatic discovery of reusable subprograms. Cambridge

  • Kumar DN, Raju KS, Sathish T (2004) River flow forecasting using recurrent neural networks. Water Resour Manag 18:143–161

    Article  Google Scholar 

  • Laaha G, Skøien J, Blöschl G (2014) Spatial prediction on river networks: comparison of top-kriging with regional regression. Hydrol Process 28:315–324

    Article  Google Scholar 

  • Landahl H, McCulloch WS, Pitts W (1943) A statistical consequence of the logical calculus of nervous nets. Bull Math Biol 5:135–137

    Google Scholar 

  • Lee KT, Hung W-C, Meng C-C (2008) Deterministic insight into ANN model performance for storm runoff simulation. Water Resour Manag 22:67–82

    Article  Google Scholar 

  • Li H, Lascano RJ, Booker J, Ted Wilson L, Bronson KF (2001) Cotton lint yield variability in a heterogeneous soil at a landscape scale. Soil Tillage Res 58:245–258

    Article  Google Scholar 

  • Li H, Syvertsen JP, Stuart RJ, McCoy CW, Schumann AW, Castle WS (2004) Soil and Diaprepes abbreviatus root weevil spatial variability in a poorly drained citrus grove. Soil Sci 169:650–662

    Article  Google Scholar 

  • Liebscher H (1972) A method for runoff-mapping from precipitation and air temperature data. In: Proceedings of the symposium on world water balance (Gent Brugge, Belgium, 15–23 July 1970), vol 92. AISH Publication, p 1

  • Lin G-F, Chen L-H (2004) A non-linear rainfall–runoff model using radial basis function network. J Hydrol 289:1–8. doi:10.1016/j.jhydrol.2003.10.015

    Article  Google Scholar 

  • Ly S, Charles C, Degre A (2011) Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol Earth Syst Sci 15(7):2259–2274

    Article  Google Scholar 

  • Ma L, Xin K, Liu S (2008) Using radial basis function neural networks to calibrate water quality model. World Acad Sci Eng Technol Int J Environ Chem Ecol Geol Geophys Eng 2(2):9–17

    Google Scholar 

  • Mahalanobis PC (1958) Recent experiments in statistical sampling in the Indian Statistical Institute Sankhyā. Indian J Stat 20:329–398

    Google Scholar 

  • Makridakis S, Wheelwright S (1978) Forecasting: methods and applications. Wiley, London

    Google Scholar 

  • Matérn B (1960) Spatial variation. Stochastic models and their application to some problems in forest surveys and other sampling investigations Meddelanden fran statens Skogsforskningsinstitut 49

  • Merz R, Blöschl G (2005) Flood frequency regionalisation—spatial proximity vs. catchment attributes. J Hydrol 302:283–306

    Article  Google Scholar 

  • Moosavi V, Vafakhah M, Shirmohammadi B, Behnia N (2013) A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour Manag 27(5):1301–1321

    Article  Google Scholar 

  • Nas B, Berktay A (2010) Groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess 160:215–227

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nathan R, McMahon T (1990) Identification of homogeneous regions for the purposes of regionalisation. J Hydrol 121:217–238

    Article  Google Scholar 

  • Nour MH, Smith DW, Gamal El-Din M, Prepas EE (2008) Towards a generic neural network model for the prediction of daily streamflow in ungauged boreal plain watersheds This article is one of a selection of papers published in this Supplement from the Forest Watershed and Riparian Disturbance (FORWARD) Project. J Environ Eng Sci 7:79–93

    Article  Google Scholar 

  • Pugliese A, Castellarin A, Brath A (2014) Geostatistical prediction of flow–duration curves in an index-flow framework. Hydrol Earth Syst Sci 18:3801–3816

    Article  Google Scholar 

  • Quenouille MH (1949) Approximate tests of correlation in time-series 3. In: Mathematical Proceedings of the Cambridge Philosophical Society. vol 03. Cambridge Univ Press, pp 483–484

  • Salas JD, Obeysekera J (1992) Conceptual basis of seasonal streamflow time series models. J Hydraul Eng 118:1186–1194

    Article  Google Scholar 

  • Saliha A, Awulachew S, Cullmann J, Horlacher H-B (2011) Estimation of flow in ungauged catchments by coupling a hydrological model and neural networks: case study. Hydrol Res 42:386–400

    Article  Google Scholar 

  • Sauquet E (2006) Mapping mean annual river discharges: geostatistical developments for incorporating river network dependencies. J Hydrol 331:300–314

    Article  Google Scholar 

  • Sauquet E, Gottschalk L, Leblois E (2000) Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme. Hydrol Sci J 45:799–815

    Article  Google Scholar 

  • Seckin N (2011) Modeling flood discharge at ungauged sites across Turkey using neuro-fuzzy and neural networks. J Hydroinform 13:842–849

    Article  Google Scholar 

  • Seckin N, Cobaner M, Yurtal R, Haktanir T (2013) Comparison of artificial neural network methods with L-moments for estimating flood flow at ungauged sites: the case of East Mediterranean River Basin, Turkey. Water Resour Manag 27(7):2103–2124

    Article  Google Scholar 

  • Sharma K, Murthy J (1998) A practical approach to rainfall–runoff modelling in arid zone drainage basins. Hydrol Sci J 43:331–348

    Article  Google Scholar 

  • Shen G, Huang X, Qian Z, Xu J (2010) Heavy metal contamination in arable land of Chongming based on GIS and Geostatistics. In: 2010 18th international conference on geoinformatics. IEEE, pp 1–5

  • Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manag 27:419–432

    Article  Google Scholar 

  • Shu C, Ouarda T (2008) Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J Hydrol 349:31–43

    Article  Google Scholar 

  • Shu C, Burn DH (2003) Spatial patterns of homogeneous pooling groups for flood frequency analysis. Hydrol Sci J 48(4):601–618

    Article  Google Scholar 

  • Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423(6937):288–293

    Article  Google Scholar 

  • Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7:270–292

    Article  Google Scholar 

  • Singh VP, Yadava RN (2003) Watershed hydrology. In: Proceedings of the international conference on water and environment (WE-2003), December 15–18, 2003, Bhopal, India. Allied Publishers

  • Sivapalan M, Viney NR, Zammit C, Singh VP, Frevert DK (2002) LASCAM: large scale catchment model. In: Mathematical models of large watershed hydrology, pp 579–648

  • Sivapalan M et al (2003) IAHS decade on predictions in ungauged basins (PUB), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrol Sci J 48:857–880

    Article  Google Scholar 

  • Skøien JO, Blöschl G (2007) Spatiotemporal topological kriging of runoff time series. Water Resour Res 43(9)

  • Skøien J, Merz R, Blöschl G (2006) Top-kriging-geostatistics on stream networks. Hydrol Earth Syst Sci Dis 10:277–287

    Article  Google Scholar 

  • Solomon S, Denouvilliez J, Chart E, Woolley J, Cadou C (1968) The use of a square grid system for computer estimation of precipitation, temperature, and runoff. Water Resour Res 4:919–929

    Article  Google Scholar 

  • Soltani F, Kerachian R, Shirangi E (2010) Developing operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate models. Expert Syst Appl 37:6639–6645

    Article  Google Scholar 

  • Sun Z, Opp C, Hennig T (2009) Modelling the stream flow change in a poorly gauged mountainous watershed, southern Tianshan Mountain, using multi-source remote sensing data. In: SPIE Europe Remote Sensing, 2009. International Society for Optics and Photonics, pp 747206

  • Tachikawa Y, Vieux BE, Georgakakos KP, Nakakita E (2003) Weather radar information and distributed hydrological modelling. In: Proceedings of an international symposium (Symposium HS03) held during IUGG 2003, the XXIII General Assembly of the International Union of Geodesy and Geophysics: at Sapporo, Japan, from 30 June to 11 July, 2003 vol 282. IAHS Press

  • Talei A, Chua LHC, Wong TS (2010) Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall–runoff modeling. J Hydrol 391:248–262

    Article  Google Scholar 

  • Valizadeh N, El-Shafie A (2013) Forecasting the level of reservoirs using multiple input fuzzification in ANFIS. Water Resour Manag 27(9):3319–3331

    Article  Google Scholar 

  • Valizadeh N, El-Shafie A, Mukhlisin M, El-Shafie A (2011) Daily water level forecasting using adaptive neuro-fuzzy interface system with different scenarios: Klang Gate, Malaysia. Int J Phys Sci 6:7379–7389

    Article  Google Scholar 

  • van Nooijen RR, Kolechkina AG (2012) A problem in hydrological model calibration in the case of averaged flux input and flux output. Environ Model Softw 37:167–178

    Article  Google Scholar 

  • Vandewiele G, Elias A (1995) Monthly water balance of ungauged catchments obtained by geographical regionalization. J Hydrol 170:277–291

    Article  Google Scholar 

  • Vieux BE, Vieux J (2002) Vflo™: A real-time distributed hydrologic model. In: Proceedings of the 2nd federal interagency hydrologic modeling conference

  • Viney NR, Sivapalan M (1999) A conceptual model of sediment transport: application to the Avon River Basin in Western Australia. Hydrol Process 13:727–743

    Article  Google Scholar 

  • Viviroli D, Mittelbach H, Gurtz J, Weingartner R (2009) Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland-Part II: parameter regionalisation and flood estimation results. J Hydrol 377:208–225

    Article  Google Scholar 

  • Weeks W, Ashkanasy N (1983) Regional parameters for the Sacramento Model: a case study. In: Hydrology and Water Resources Symposium 1983: Preprints of Papers, 1983. Institution of Engineers, Australia, p 183

  • Wetzel RG (2001) Limnology: lake and River. Ecosystems. doi:10.1046/j.1529-8817.2001.37602.x

    Google Scholar 

  • Wright NG, Dastorani MT (2001) Effects of river basin classification on artificial neural networks based ungauged catchment flood prediction. Paper presented at the International Symposium on Environmental Hydraulics

  • Wu G-D, Lo S-L (2008) Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system. Eng Appl Artif Intell 21:1189–1195

    Article  Google Scholar 

  • Wurbs RA (2005) Modeling river/reservoir system management, water allocation, and supply reliability. J Hydrol 300:100–113

    Article  Google Scholar 

  • Yan H, Zou Z, Wang H (2010) Adaptive neuro fuzzy inference system for classification of water quality status. J Environ Sci 22:1891–1896

    Article  Google Scholar 

  • Yarus J, Chambers R (2006) Practical geostatistics-an armchair overview for petroleum reservoir engineers. J Petrol Technol 58:78–86

    Article  Google Scholar 

  • Yaseen ZM, El-Shafie A, Afan HA, Hameed M, Mohtar WHMW, Hussain A (2015) RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia. Neural Comput Appl. doi:10.1007/s00521-015-1952-6

    Google Scholar 

  • Yazdani M, Saghafian B, Mahdian M, Soltani S (2009) Monthly runoff estimation using artificial neural networks. J Agric Sci Technol 11:355–362

    Google Scholar 

  • Yew Gan T, Dlamini EM, Biftu GF (1997) Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. J Hydrol 192:81–103

    Article  Google Scholar 

  • Zedeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zhang Z, Kroll C (2007) The baseflow correlation method with multiple gauged sites. J Hydrol 347(3):371–380

    Article  Google Scholar 

  • Zhao R, Chen S (2008) A hybrid fuzzy and neural network model for hydrological forecasting in ungauged basins. IAHS-AISH publication, pp 39–48

Download references

Acknowledgements

This work was supported by a grant from University of Malaya’s BKP Grant BK023-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Falah Allawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valizadeh, N., Mirzaei, M., Allawi, M.F. et al. Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art. Nat Hazards 86, 1377–1392 (2017). https://doi.org/10.1007/s11069-017-2740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-2740-7

Keywords

Navigation