Natural Hazards

, Volume 86, Issue 2, pp 535–556 | Cite as

Supervised classification of civil air patrol (CAP)

  • Elena Sava
  • Laura Clemente-Harding
  • Guido Cervone
Original Paper


The mitigation and response to floods rely on accurate and timely flood assessment. Remote sensing technologies have become the de facto approach for observing the Earth and its environment. However, satellite remote sensing data are not always available, and it is crucial to develop new techniques to complement them with additional sources. This research proposes a new methodology based on machine learning algorithms to automatically identify water pixels in Civil Air Patrol (CAP) aerial imagery. Specifically, a wavelet transformation is paired with multiple classifiers to build models that discriminate water and non-water pixels. The learned classification models are first tested against a set of control cases and then used to automatically classify each image separately. Lastly, for each pixel in an image, a measure of uncertainty is computed as a proportion of the number of models that classify the pixel as water. The proposed methodology is tested on imagery collected during the 2013 Colorado flood.


Supervised classification Remote sensing Damage assessment Natural hazards Flood Civil air patrol 



Work performed under this project has been partially funded by the Office of Naval Research (ONR) Award #N00014-14-1-0208 (PSU #171570). We wish to thank Drs. Andris and Brooks for their comments that helped improve the present manuscript.


  1. Amolins K, Zhang Y, Dare P (2007) Wavelet based image fusion techniquesan introduction, review and comparison. ISPRS J Photogramm Remote Sens 62(4):249–263CrossRefGoogle Scholar
  2. Arivazhagan S, Ganesan L (2003) Texture classification using wavelet transform. Pattern Recognit Lett 24(9):1513–1521CrossRefGoogle Scholar
  3. Aujol JF, Aubert G, Blanc-Féraud L (2003) Wavelet-based level set evolution for classification of textured images. IEEE Trans Image Process 12(12):1634–1641CrossRefGoogle Scholar
  4. Baatz M, Schäpe A (2000) Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. Angewandte Geographische Informationsverarbeitung XII 58:12–23Google Scholar
  5. Baaziz N, Abahmane O, Missaoui R (2010) Texture feature extraction in the spatial-frequency domain for content-based image retrieval. arXiv preprint arXiv:10125208
  6. Bai C, Zou W, Kpalma K, Ronsin J (2012) Efficient colour texture image retrieval by combination of colour and texture features in wavelet domain. Electron Lett 48(23):1463–1465CrossRefGoogle Scholar
  7. Bharati MH, Liu JJ, MacGregor JF (2004) Image texture analysis: methods and comparisons. Chemometr Intell Lab Syst 72(1):57–71CrossRefGoogle Scholar
  8. Bianconi F, Fernández A (2007) Evaluation of the effects of gabor filter parameters on texture classification. Pattern Recognit 40(12):3325–3335CrossRefGoogle Scholar
  9. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Wadsworth International Group, BelmontGoogle Scholar
  10. Campbell JB, Wynne RH (2011) Introduction to remote sensing, 5th ed. Guilford Press, New YorkGoogle Scholar
  11. Cervone G, Sava E, Huang Q, Schnebele E, Harrison J, Waters N (2016) Using twitter for tasking remote-sensing data collection and damage assessment: 2013 boulder flood case study. Int J Remote Sens 37(1):100–124CrossRefGoogle Scholar
  12. Chang JD, Yu SS, Chen HH, Tsai CS (2010) Hsv-based color texture image classification using wavelet transform and motif patterns. J Comput 20(4):63–69Google Scholar
  13. Csurka G, Perronnin F (2011) An efficient approach to semantic segmentation. Int J Comput Vis 95(2):198–212CrossRefGoogle Scholar
  14. Do MN, Vetterli M (2002) Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Trans Image Process 11(2):146–158CrossRefGoogle Scholar
  15. Dougherty G (2012) Pattern recognition and classification: an introduction. Springer Science & Business Media, BerlinGoogle Scholar
  16. Frazier PS, Page KJ et al (2000) Water body detection and delineation with landsat tm data. Photogramm Eng Remote Sens 66(12):1461–1468Google Scholar
  17. Gochis D, Schumacher R, Friedrich K, Doesken N, Kelsch M, Sun J, Ikeda K, Lindsey D, Wood A, Dolan B, et al (2014) The great Colorado flood of september 2013. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-13-00241.1
  18. Goodchild MF, Glennon JA (2010) Crowdsourcing geographic information for disaster response: a research frontier. Int J Digitl Earth 3(3):231–241CrossRefGoogle Scholar
  19. Hadjimitsis DG (2007) The use of satellite remote sensing and gis for assisting flood risk assessment: a case study of the agriokalamin catchment area in paphos-cyprus. Remote Sens Int Soc Optics Photonics 67420Z–67420ZGoogle Scholar
  20. Han J, Kamber M, Pei J (2006) Data mining, southeast asia edition: concepts and techniques. Morgan Kaufmann, BurlingtonGoogle Scholar
  21. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804CrossRefGoogle Scholar
  22. Hein H, Feklistova L (2011) Computationally efficient delamination detection in composite beams using haar wavelets. Mech Syst Signal Process 25(6):2257–2270CrossRefGoogle Scholar
  23. Huang K, Aviyente S (2008) Wavelet feature selection for image classification. IEEE Trans Image Process 17(9):1709–1720CrossRefGoogle Scholar
  24. Im J, Jensen J, Tullis J (2008) Object-based change detection using correlation image analysis and image segmentation. Int J Remote Sens 29(2):399–423CrossRefGoogle Scholar
  25. Islam MM, Sado K (2002) Development priority map for flood countermeasures by remote sensing data with geographic information system. J Hydrol Eng 7(5):346–355CrossRefGoogle Scholar
  26. Joyce KE, Belliss SE, Samsonov SV, McNeill SJ, Glassey PJ (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog Phys Geogr. doi: 10.1177/0309133309339563
  27. Lamovec P, Veljanovski T, Mikoš M, Oštir K (2013) Detecting flooded areas with machine learning techniques: case study of the selška sora river flash flood in september 2007. J Appl Remote Sens 7(1):073,564–073,564CrossRefGoogle Scholar
  28. Lee J, Warner T (2006) Segment based image classification. Int J Remote Sens 27(16):3403–3412CrossRefGoogle Scholar
  29. Li W, Liu K, Su H (2014) Wavelet-based nearest-regularized subspace for noise-robust hyperspectral image classification. J Appl Remote Sens 8(1):083,665–083,665CrossRefGoogle Scholar
  30. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693CrossRefGoogle Scholar
  31. Mason DC, Horritt MS, Amico JTD, Scott TR, Bates PD (2007) Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry. IEEE Trans Geosci Remote Sens 45(12):3932–3943CrossRefGoogle Scholar
  32. Materka A, Strzelecki M (1998) Texture analysis methods: a review. COST B11 report, Technical University of Lodz, Institute of Electronics, COST B11 report, BrusselsGoogle Scholar
  33. Möller M, Lymburner L, Volk M (2007) The comparison index: a tool for assessing the accuracy of image segmentation. Int J Appl Earth Obs Geoinf 9(3):311–321CrossRefGoogle Scholar
  34. Moody DI, Brumby SP, Rowland JC, Altmann GL (2014) Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries. J Appl Remote Sens 8(1):084,793–084,793CrossRefGoogle Scholar
  35. Mueller M, Segl K, Kaufmann H (2004) Edge-and region-based segmentation technique for the extraction of large, man-made objects in high- resolution satellite imagery. Patt Recognit 37(8):1619–1628CrossRefGoogle Scholar
  36. Muñoz X, Freixenet J, Cufı X, Martı J (2003) Strategies for image segmentation combining region and boundary information. Patt Recognit Lett 24(1):375–392CrossRefGoogle Scholar
  37. Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q (2011) Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens Environ 115(5):1145–1161CrossRefGoogle Scholar
  38. Nagasawa R et al (2014) Potential flood hazard assessment by integration of alos palsar and aster gdem: a case study for the hoa chau commune, hoa vang district, in central vietnam. J Appl Remote Sens 8(1):083,626–083,626CrossRefGoogle Scholar
  39. Pantofaru C, Schmid C, Hebert M (2008) Object recognition by integrating multiple image segmentations. In: Computer Vision–ECCV 2008, Springer, pp 481–494Google Scholar
  40. Pittman E (2014) How Boulder, Colorado, prepared for ‘biblical’ rainfall. Emerg ManagGoogle Scholar
  41. Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, BurlingtonGoogle Scholar
  42. Rango A, Anderson AT (1974) Flood hazard studies in the mississippi river basin using remote sensing. Wat Resour Bull 10(5):1060–1081Google Scholar
  43. Rango A, Salomonson VV (1974) Regional flood mapping from space. Water Resour Res 10(3):473–484CrossRefGoogle Scholar
  44. Recio JAR, Fernández LAR, Fernández-Sarriá A (2005) Use of gabor filters for texture classification of digital images. Física de la Tierra 17:47Google Scholar
  45. Sakamoto T, Van Nguyen N, Kotera A, Ohno H, Ishitsuka N, Yokozawa M (2007) Detecting temporal changes in the extent of annual flooding within the cambodia and the vietnamese mekong delta from modis time-series imagery. Remote Sens Environ 109(3):295–313CrossRefGoogle Scholar
  46. Salamati N, Larlus D, Csurka G, Süsstrunk S (2014) Incorporating near-infrared information into semantic image segmentation. arXiv preprint arXiv:14066147
  47. Sanyal J, Lu X (2004) Application of remote sensing in flood management with special reference to monsoon asia: a review. Nat Hazards 33(2):283–301CrossRefGoogle Scholar
  48. Schiewe J (2002) Segmentation of high-resolution remotely sensed data-concepts, applications and problems. Int Archives Photogramm Remote Sens Spatial Inf Sci 34(4):380–385Google Scholar
  49. Schnebele E, Cervone G (2013) Improving remote sensing flood assessment using volunteered geographical data. Nat Hazards Earth Syst Sci 13:669–677CrossRefGoogle Scholar
  50. Schnebele E, Cervone G, Kumar S, Waters N (2014a) Real time estimation of the calgary floods using limited remote sensing data. Water 6(2):381–398CrossRefGoogle Scholar
  51. Schnebele E, Cervone G, Waters N (2014b) Road assessment after flood events using non-authoritative data. Nat Hazards Earth Syst Sci 14(4):1007–1015CrossRefGoogle Scholar
  52. Schumann G, Bates PD, Horritt MS, Matgen P, Pappenberger F (2009) Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models. Rev Geophys 47(4):RG4001Google Scholar
  53. Shotton J, Winn J, Rother C, Criminisi A (2006) Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Computer Vision–ECCV 2006, Springer, pp 1–15Google Scholar
  54. Skarbnik N (2009) The importance of phase in image processing. Technion-Israel Institute of Technology, Faculty of Electrical EngineeringGoogle Scholar
  55. Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process 11(10):1427–1439CrossRefGoogle Scholar
  56. Steinberg D, Colla P (1995) CART: tree-structured non-parametric data analysis. Salford Systems, San Diego, CAGoogle Scholar
  57. Stow D, Hamada Y, Coulter L, Anguelova Z (2008) Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery. Remote Sens Environ 112(3):1051–1061CrossRefGoogle Scholar
  58. Vijayaraghavan C, Thirumalaivasan D, Venkatesan R (2012) Utilization of remote sensing and gis in managing disasters-a review. Int J Sci Eng Res 3(1):1–8Google Scholar
  59. Wang Y, Colby J, Mulcahy K (2002) An efficient method for mapping flood extent in a coastal floodplain using landsat tm and dem data. Int J Remote Sens 23(18):3681–3696CrossRefGoogle Scholar
  60. Weidner U (2008) Contribution to the assessment of segmentation quality for remote sensing applications. Int Archives Photogramm Remote Sens Spatial Inf Sci 37(B7):479–484Google Scholar
  61. Winter S (2000) Location similarity of regions. ISPRS J Photogramm Remote Sens 55(3):189–200CrossRefGoogle Scholar
  62. Zou W, Chi Z, Lo KC (2008) Improvement of image classification using wavelet coefficients with structured-based neural network. Int J Neural Syst 18(03):195–205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Geoinformatics and Earth Observation Laboratory, Department of Geography and Institute for CyberScienceThe Pennsylvania State UniversityState CollegeUSA
  2. 2.Geospatial Research Laboratory, Engineer Research and Development CenterAlexandriaUSA
  3. 3.Research Application Laboratory, National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations