Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile

  • 775 Accesses

  • 11 Citations

Abstract

The impact of natural hazards on mankind has increased dramatically over the past decades. Global urbanization processes and increasing spatial concentrations of exposed elements induce natural hazard risk at a uniquely high level. To mitigate affiliated perils requires detailed knowledge about elements at risk. Considering a high spatiotemporal variability of elements at risk, detailed information is costly in terms of both time and economic resources and therefore often incomplete, aggregated, or outdated. To alleviate these restrictions, the availability of very-high-resolution satellite images promotes accurate and detailed analysis of exposure over various spatial scales with large-area coverage. In the past, valuable approaches were proposed; however, the design of information extraction procedures with a high level of automatization remains challenging. In this paper, we uniquely combine remote sensing data and volunteered geographic information from the OpenStreetMap project (OSM) (i.e., freely accessible geospatial information compiled by volunteers) for a highly automated estimation of crucial exposure components (i.e., number of buildings and population) with a high level of spatial detail. To this purpose, we first obtain labeled training segments from the OSM data in conjunction with the satellite imagery. This allows for learning a supervised algorithmic model (i.e., rotation forest) in order to extract relevant thematic classes of land use/land cover (LULC) from the satellite imagery. Extracted information is jointly deployed with information from the OSM data to estimate the number of buildings with regression techniques (i.e., a multi-linear model from ordinary least-square optimization and a nonlinear support vector regression model are considered). Analogously, urban LULC information is used in conjunction with OSM data to spatially disaggregate population information. Experimental results were obtained for the city of Valparaíso in Chile. Thereby, we demonstrate the relevance of the approaches by estimating number of affected buildings and population referring to a historical tsunami event.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Adeline KRM, Chen M, Briottet X, Pang SK, Paparoditis N (2013) Shadow detection in very high spatial resolution aerial images: a comparative study. ISPRS J Photogramm Remote Sens 80:21–38

  2. Ali M, Clausi D (2001) Using the Canny edge detector for feature extraction and enhancement of remote sensing images, IGARSS 2001. Scanning the present and resolving the future. In: Proceedings of IEEE 2001 international geoscience and remote sensing symposium, vol 5(C), pp 2298–2300

  3. Aubrecht C, Steinocher K, Hollaus M, Wagner W (2009) Integrating earth observation and GIScience for high resolution spatial and functional modeling of urban land use. Comput Environ Urban Syst 33(1):15–25

  4. Aubrecht C, Ungar J, Freire S (2011) Exploring the potential of volunteered geographic information for modeling spatio-temporal characteristics of urban population A case study for Lisbon Metro using foursquare check-in data. International conference virtual city and territory 2011, Lisboa, pp 11–13

  5. Aubrecht C, Özceylan D, Steinnocher K, Freire S (2013) Multi-level geospatial modeling of human exposure patterns and vulnerability indicators. Nat Hazards 68:147–163

  6. Aubrecht C, Özceylan D, Ungar J, Freire S, Steinnocher K (2016) VGDI—advancing the concept: volunteered geo-dynamic information and its benefits for population dynamics modeling. Trans GIS. doi:10.1111/tgis.12203

  7. Baatz M, Schäpe A (2000) Multiresolution segmentation—an optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geographische Informations-Verarbeitung XII. Wichmann Verlag, Karlsruhe, pp 12–23

  8. Belgiu M, Dragut L (2014) Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS J Photogramm Remote Sens 96:67–75

  9. Berry JK (2007) Map analysis: understanding the spatial patterns and relationships. GeoTec Media, San Francisco

  10. Bianchini R, Feeney G, Rajendra S (2013) Report of the International Commission on the 2012 Population and Housing Census of Chile. Technical Report November, International Commission, Santiago de Chile

  11. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16

  12. Blaschke T, Hay G, Weng Q, Resch B (2011) Collective sensing: integrating geospatial technologies to understand urban systems—an overview. Remote Sens 3(8):1743–1776

  13. Bruzzone L, Carlin L (2006) A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans Geosci Remote Sens 44(9):2587–2600

  14. Bruzzone L, Chi M, Marconcini M (2006) A Novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373

  15. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:1–47

  16. Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process Mag 31(10):45–54

  17. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

  18. Chen CH, Ho PGP (2008) Statistical pattern recognition in remote sensing. Pattern Recogn 41(9):2731–2741

  19. Cisternas M, Torrejón F, Gorigoitia N (2012) Amending and complicating Chile’s seismic catalog with the Santiago earthquake of 7 August 1580. J S Am Earth Sci 33:102–109

  20. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:1–25

  21. Cutter S (2003) Social Vulnerability to environmental hazards. Soc Sci Q 84(2):242–261

  22. Demir B, Minello L, Bruzzone L (2014) Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method. IEEE Trans Geosci Remote Sens 52(2):1272–1284

  23. DigitalGlobe (2010) The benefits of the eight spectral bands of WorldView-2. Whitepaper. https://www.digitalglobe.com/sites/default/files/DG-8SPECTRAL-WP_0.pdf. Accesed 6 July 2015

  24. Dragut L, Tiede D, Levick SR (2010) ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geogr Inf Sci 24(6):859–871

  25. Ehrlich D, Tenerelli P (2013) Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assessments. Nat Hazards 68:1271–1289

  26. Ehrlich D, Zeug G, Gallego J, Gerhardinger A, Caravaggi I, Pesaresi M (2010) Quantifying the building stock from optical high-resolution satellite imagery for assessing disaster risk. Geocarto Int 25(4):281–293

  27. Ehrlich D, Kemper T, Blaes X, Soille P (2013) Extracting building stock information from optical satellite imagery for mapping earthquake exposure and its vulnerability. Nat Hazards 68:79–95

  28. Epifanio I, Soille P (2007) Morphological texture features for unsupervised and supervised segmentations of natural landscapes. IEEE Trans Geosci Remote Sens 45(4):1074–1083

  29. Esch T, Thiel M, Bock M, Roth A, Dech S (2008) Improvement of image segmentation accuracy based on multiscale optimization procedure. IEEE Geosci Remote Sens Lett 5(3):463–467

  30. Espindola GM, Camara G, Reis IA, Bins LS, Monteiro AM (2006) Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int J Remote Sens 27(14):3035–3040

  31. Fan H, Zipf A, Fu Q, Neis P (2014) Quality assessment for building footprints data on OpenStreetMap. Int J Geogr Inf Sci 28(4):700–719

  32. Flanagin AJ, Metzger MJ (2008) The credibility of volunteered geographic information. GeoJournal 72(3–4):137–148

  33. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

  34. Foody GM, Boyd DS (2013) Using volunteered data in land cover map validation: mapping west African forests. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1305–1312

  35. Geiß C, Taubenböck H (2013) Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap. Nat Hazards 68:7–48

  36. Geiß C, Taubenböck H (2015) Object-based Postclassification Relearning. IEEE Geosci Remote Sens Lett 12(11):2336–2340

  37. Geiß C, Taubenböck H, Tyagunov S, Tisch A, Post J, Lakes T (2014) Assessment of seismic building vulnerability from space. Earthq Spectra 30(4):1553–1583

  38. Geiß C, Pelizari PA, Marconcini M, Sengara W, Edwards M, Lakes T, Taubenböck H (2015) Estimation of seismic building structural types using multi-sensor remote sensing and machine learning techniques. ISPRS J Photogramm Remote Sens 104:175–188

  39. Geiß C, Jilge M, Lakes T, Taubenböck H (2016a) Estimation of seismic vulnerability levels of urban structures with multisensor remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens 9(5):1913–1936

  40. Geiß C, Klotz M, Schmitt A, Taubenböck H (2016b) Object-based morphological profiles for classification of remote sensing imagery. IEEE Trans Geosci Remote Sens 54(10):5952–5963

  41. Geofabrik (2014) OpenStreetMap Data Extracts. http://download.geofabrik.de/. Accessed 5 Nov 2014

  42. Gokon H, Post J, Stein E, Martinis S, Twele A, Mück M, Geiß C, Koshimura S, Matsuoka M (2015) A method for detecting buildings destroyed by the 2011 Tohoku earthquake and tsunami using multitemporal TerraSAR-X data. IEEE Geosci Remote Sens Lett 12(6):1277–1281

  43. Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221

  44. Haklay M (2010) How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ Plan 37(4):682–703

  45. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18

  46. Hecht R, Kunze C, Hahmann S (2013) Measuring completeness of building footprints in OpenStreetMap over space and time. ISPRS Int J Geo Inf 2(4):1066–1091

  47. Indirli M, Valpreda E, Panza G, Romanelli F, Lanzoni L, Teston S, Berti M, Bennardo SD, Rossi G (2010) Natural multi-hazard and building vulnerability assessment in the historical centers: the examples of San Giuliano di Puglia (Italy) and Valparaiso (Chile). In: Proceedings of the European commission conference “SAUVEUR”, safeguarded cultural heritage, May 31–June 3, Praha

  48. INE (2015) Instituto Nacional de Estadísticas Chile: Estadísticas Chile. http://www.ine.cl/canales/chile_estadistico/familias/censos.php. Accessed 22 Jan 2015

  49. Jokar Arsanjani J, Helbich M, Bakillah M, Loos L (2015a) The emergence and evolution of OpenStreetMap: a cellular automata approach. Int J Digit Earth 8(1):74–88

  50. Jokar Arsanjani J, Zipf A, Mooney P, Helbich M (eds) (2015b) An introduction to OpenStreetMap in GIScience: experiences, research, applications. In: OpenStreetMap in GIScience: experiences, research, applications. Springer, Switzerland

  51. Jokar Arsanjani J, Mooney P, Helbich M, Zipf A (2015c) An exploration of future patterns of the contributions to OpenStreetMap and development of a contribution index. Trans GIS. doi:10.1111/tgis.1213

  52. Kavzoglu T, Colkesen I (2013) An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping. Int J Remote Sens 34(12):4224–4241

  53. Klonner C, Barron C, Neis P, Höfle B (2014) Updating digital elevation models via change detection and fusion of human and remote sensor data in urban environments. Int J Digit Earth 8(2):151–169

  54. Kunze C, Hecht R (2015) Semantic enrichment of building data with volunteered geographic information to improve mappings of dwelling units and population. Comput Environ Urban Syst. doi:10.1016/j.compenvurbsys.2015.04.002

  55. Lee JS (1983) Digital image smoothing and the sigma filter. Comput Vis Graph 24(2):255–269

  56. Leichtle T, Geiß C, Wurm M, Lakes T, Taubenböck H (2017) Unsupervised change detection in VHR remote sensing imagery—an object-based clustering approach in a dynamic urban environment. Int J Appl Earth Obs Geoinf 54:15–27

  57. Mack B, Roscher R, Waske B (2014) Can i trust my one-class classification? Remote Sens 6(9):8779–8802

  58. Marconcini M, Fernandez-Prieto D, Buchholz T (2014) Targeted land-cover classification. IEEE Trans Geosci Remote Sens 52(7):4173–4193

  59. Martha TR, Kerle N, van Westen CJ, Jetten V, Kumar KV (2011) Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. IEEE Trans Geosci Remote Sens 49(12):4928–4943

  60. Mennis J, Hultgren T (2006) Intelligent dasymetric mapping and its application to areal interpolation. Cartogr Geogr Inf Sci 33(3):179–194

  61. Montgomery DC, Peck EA, Vining GG (2001) Introduction to linear regression analysis, 3rd edn. Wiley, New York, p 672

  62. Neis P, Zipf A (2012) Analyzing the contributor activity of a volunteered geographic information project—the case of OpenStreetMap. ISPRS Int J Geo Inf 1(3):146–165

  63. Okujeni A, van der Linden S, Tits L, Somers B, Hostert P (2013) Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens Environ 137:184–197

  64. ONEMI (2014) Ministerio de Interior y Seguridad Pública: Incendio en Valparaíso. http://www.onemi.cl/incendio-en-valparaiso. Accessed 22 Jan 2015

  65. OSM Task Manager (2014a) #502—Valparaíso, Chile Fires/Fuegos en Valparaíso, Chile. http://tasks.hotosm.org/project/502. Accessed 22 Jan 2015

  66. OSM Task Manager (2014b) #508—Valparaíso, Chile Fires 2/Valparaíso, Chile Incendios. http://tasks.hotosm.org/project/508. Accessed 22 Jan 2015

  67. OSM (2015a) OpenStreetMap copyright. http://www.openstreetmap.org/copyright/en. Accessed 26 June 2015

  68. OSM (2015b) OpenStreetMap Map Features. http://wiki.openstreetmap.org/wiki/Map_Features. Accessed 13 Jan 2015

  69. OSM (2015c) Planet.osm. http://wiki.openstreetmap.org/wiki/Planet.osm. Accessed 22 Jan 2015

  70. Pasolli E, Melgani F, Tuia D, Pacifici F, Emery WJ (2014) SVM active learning approach for image classification using spatial information. IEEE Trans Geosci Remote Sens 52(4):2217–2233

  71. Pesaresi M, Benediktsson J (2001) A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans Geosci Remote Sens 39(2):309–320

  72. Pesaresi M, Huadong G, Blaes X, Ehrlich D, Ferri S, Gueguen L, Halkia M, Kauffmann M, Kemper T, Lu L, Marin-Herrera MA, Ouzounis GK, Scavazzon M, Soille P, Syrris V, Zanchetta L (2013) A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE J Sel Top Appl Earth Obs Remote Sens 6(5):2102–2131

  73. Picozzi M, Bindi D, Pittore M, Kieling K, Parolai S (2013) Real-time risk assessment in seismic early warning and rapid response: a feasibility study in Bishkek (Kyrgyzstan). J Seismol 17:485–505

  74. Poser K, Dransch D (2010) Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica 64(1):89–98

  75. Puissant A, Rougier S, Stumpf A (2014) Object-oriented mapping of urban trees using Random Forest classifiers. Int J Appl Earth Obs Geoinf 26:235–245

  76. Richter R (1996) A spatially adaptive fast atmospheric correction algorithm. Int J Remote Sens 17(6):1201–1214

  77. Richter R, Schläpfer D (2014) Atmospheric/topographic correction for satellite imagery, Technical report

  78. Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630

  79. Sánchez MA, Bosque MJ, Jiménez VC (2009) Valparaíso: su geografía, su historia y su identidad como Patrimonio de la Humanidad. Estudios Geográficos 70(266):269–293

  80. Schnebele E, Cervone G (2013) Improving remote sensing flood assessment using volunteered geographical data. Nat Hazard Earth Syst Sci 13(3):669–677

  81. Schneiderbauer S, Ehrlich D (2004) Risk, hazard and people’s vulnerability to natural hazards. A review of definitions, concepts and data. Joint Research Centre, European Commission, EUR 21410

  82. Sester M, Arsanjani JJ, Klammer R, Burghardt D, Haunert JH (2014) Integrating and generalizing volunteered geographic information. In: Duchene B, Mackaness C, Burghardt W (eds) Abstracting geographic information in a data rich world. Springer Press, Cham

  83. Sheng LSL, Xiaoyu WXW, Xinfa QXQ, Yongjian HYH (2009) Mathematical morphology edge detection algorithm of remote sensing image with high resolution. 2009 1st International conference on information science and engineering (ICISE), pp 1323–1326

  84. SHOA (2012) Carta de Inundación por Tsunami para Valparaíso—Viña del Mar: referida al evento de 1730. http://www.shoa.cl/servicios/citsu/pdf/citsu_valparaiso_vinna.pdf. Accessed 20 Oct 2015

  85. SHOA (2015) Instrucciones Oceanográficas No 4 “Especificaciones Técnicas para la Elaboración de Cartas de Inundación por Tsunami (CITSU)”. Pub. SHOA 3204

  86. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

  87. Soille P (2004) Morphological image analysis, 2nd edn. Springer-Verlag, Berlin

  88. Soille P, Pesaresi M (2002) Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Trans Geosci Remote Sens 40(9):2042–2055

  89. Stiglic G, Rodriguez JJ, Kokol P (2011) Rotation of Random Forests for genomic and proteomic classification problems. Adv Exp Med Biol 696:211–221

  90. Strunz G, Post J, Zosseder K, Wegscheider S, Mück M, Riedlinger T, Mehl H, Dech S, Birkmann J, Gebert N, Harjono H, Anwar HZ, Sumaryono Khomarudin RM, Muhari A (2011) Tsunami risk assessment in Indonesia. Nat Hazards Earth Syst Sci 11:67–82

  91. Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using Random Forests. Remote Sens Environ 115(10):2564–2577

  92. Stumpf A, Lachiche N, Malet JP, Kerle N, Puissant A (2014) Active learning in the spatial domain for remote sensing image classification. IEEE Trans Geosci Remote Sens 52(5):2492–2507

  93. Sun Z, Fang H, Deng M, Chen A, Yue P, Di L (2015) Regular shape similarity index: a novel index for accurate extraction of regular objects from remote sensing images. IEEE Trans Geosci Remote Sens 53(7):3737–3748

  94. Taubenböck H, Post J, Roth A, Zosseder K, Strunz G, Dech S (2008) A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing. Nat Hazards Earth Sys Sci 8(3):409–420

  95. Taubenböck H, Esch T, Wurm M, Roth A, Dech S (2010) Object-based feature extraction using high spatial resolution satellite data of urban areas. J Spatial Sci 55(1):117–133

  96. Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from space. Remote Sens Environ 117:162–176

  97. Taubenböck H, Klotz M, Wurm M, Schmieder J, Wagner B, Wooster M, Esch T, Dech S (2013) Delineation of Central Business Districts in mega city regions using remotely sensed data. Remote Sens Environ 136:386–401

  98. Thywissen K (2006) Core terminology of disaster reduction: a comparative glossary. In: Birkmann J (ed) Measuring vulnerability to natural hazards. United Nations University Press, New York, pp 448–496

  99. Timmermann P (1981) Vulnerability, resilience and the collapse of society. No. 1 in environmental monograph. Institute for Environmental Studies, University of Toronto

  100. Trimble (2014) eCognition developer 9.0 reference book. Germany Trimble Documentation, München

  101. Tuia D, Pacifici F, Kanevski M, Emery WJ (2009a) Classification of very high spatial resolution imagery using mathematical morphology and support vector machines. IEEE Trans Geosci Remote Sens 47(11):3866–3879

  102. Tuia D, Ratle F, Pacifici F, Kanevski MF, Emery WJ (2009b) Active learning methods for remote sensing image classification. IEEE Trans Geosci Remote Sens 47(7):2218–2232

  103. Tuia D, Copa L, Kanevski M, Munoz-Mari J (2011a) A survey of active learning algorithms for supervised remote sensing image classification. IEEE J Sel Top Signal Process 5(3):606–617

  104. Tuia D, Pasolli E, Emery WJ (2011b) Using active learning to adapt remote sensing image classifiers. Remote Sens Environ 115(9):2232–2242

  105. UNDRO (1979) Natural disasters and vulnerability analysis. Report of Expert Group Meeting, Geneva, 9–12 July 1979

  106. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York, p 187

  107. Wegscheider S, Post J, Zosseder K, Mück M, Strunz G, Riedlinger T, Muhari A, Anwar HZ (2011) Generating tsunami risk knowledge at community level as a base for planning and implementation of risk reduction strategies. Nat Hazards Earth Syst Sci 11:249–258

  108. Wieland M, Pittore M, Parolai S, Zschau J (2012a) Exposure estimation from multi-resolution optical satellite imagery for seismic risk assessment. ISPRS Int J GeoInf 1:69–88

  109. Wieland M, Pittore M, Parolai S, Zschau J, Moldobekov B, Begaliev U (2012b) Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging. Soil Dyn Earthq Eng 36:70–83

  110. Wu S-S, Qiu X, Wang L (2005) Population estimation methods in GIS and remote sensing: a review. GISci Remote Sens 42(1):58–74

  111. Xia J, Du P, He X, Chanussot J (2014) Hyperspectral remote sensing image classification based on rotation forest. IEEE Geosci Remote Sens Lett 11(1):239–243

  112. Xia J, Chanussot J, Du P, He X (2015) Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and markov random fields. IEEE Trans Geosci Remote Sens 53(5):2532–2546

  113. Zheng L, Wan L, Huo H, Fang T (2014) A noise removal approach for object-based classification of VHR imagery via post-classification. 2014 International conference on audio, language and image processing, pp 915–920

  114. Zielstra D, Zipf A (2010) A comparative study of proprietary geodata and volunteered geographic information for Germany. In: Proceedings of 13th AGILE international conference on geographic information science, vol 1, 10–14 May, Guimarães

Download references

Acknowledgements

The authors would like to acknowledge the support by the German Federal Ministry for Education and Research (BMBF), under Grant Agreement No. 01DN12089. This work was also supported by the Helmholtz Association under the framework of the Postdoc project “pre_DICT” (PD-305). The authors would like to thank European Space Imaging (EUSI) for providing WorldView-2 imagery and the anonymous reviewers for the helpful comments.

Author information

Correspondence to Christian Geiß.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geiß, C., Schauß, A., Riedlinger, T. et al. Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile. Nat Hazards 86, 81–105 (2017). https://doi.org/10.1007/s11069-016-2663-8

Download citation

Keywords

  • Exposure
  • Risk
  • Vulnerability
  • Remote sensing
  • Volunteered geographic information
  • Land-use–land-cover classification
  • Object-based image analysis
  • Rotation forest
  • Population disaggregation
  • Tsunami