Natural Hazards

, Volume 86, Supplement 1, pp 81–105 | Cite as

Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile

  • Christian Geiß
  • Anne Schauß
  • Torsten Riedlinger
  • Stefan Dech
  • Cecilia Zelaya
  • Nicolás Guzmán
  • Mathías A. Hube
  • Jamal Jokar Arsanjani
  • Hannes Taubenböck
Original Paper


The impact of natural hazards on mankind has increased dramatically over the past decades. Global urbanization processes and increasing spatial concentrations of exposed elements induce natural hazard risk at a uniquely high level. To mitigate affiliated perils requires detailed knowledge about elements at risk. Considering a high spatiotemporal variability of elements at risk, detailed information is costly in terms of both time and economic resources and therefore often incomplete, aggregated, or outdated. To alleviate these restrictions, the availability of very-high-resolution satellite images promotes accurate and detailed analysis of exposure over various spatial scales with large-area coverage. In the past, valuable approaches were proposed; however, the design of information extraction procedures with a high level of automatization remains challenging. In this paper, we uniquely combine remote sensing data and volunteered geographic information from the OpenStreetMap project (OSM) (i.e., freely accessible geospatial information compiled by volunteers) for a highly automated estimation of crucial exposure components (i.e., number of buildings and population) with a high level of spatial detail. To this purpose, we first obtain labeled training segments from the OSM data in conjunction with the satellite imagery. This allows for learning a supervised algorithmic model (i.e., rotation forest) in order to extract relevant thematic classes of land use/land cover (LULC) from the satellite imagery. Extracted information is jointly deployed with information from the OSM data to estimate the number of buildings with regression techniques (i.e., a multi-linear model from ordinary least-square optimization and a nonlinear support vector regression model are considered). Analogously, urban LULC information is used in conjunction with OSM data to spatially disaggregate population information. Experimental results were obtained for the city of Valparaíso in Chile. Thereby, we demonstrate the relevance of the approaches by estimating number of affected buildings and population referring to a historical tsunami event.


Exposure Risk Vulnerability Remote sensing Volunteered geographic information Land-use–land-cover classification Object-based image analysis Rotation forest Population disaggregation Tsunami 



The authors would like to acknowledge the support by the German Federal Ministry for Education and Research (BMBF), under Grant Agreement No. 01DN12089. This work was also supported by the Helmholtz Association under the framework of the Postdoc project “pre_DICT” (PD-305). The authors would like to thank European Space Imaging (EUSI) for providing WorldView-2 imagery and the anonymous reviewers for the helpful comments.


  1. Adeline KRM, Chen M, Briottet X, Pang SK, Paparoditis N (2013) Shadow detection in very high spatial resolution aerial images: a comparative study. ISPRS J Photogramm Remote Sens 80:21–38CrossRefGoogle Scholar
  2. Ali M, Clausi D (2001) Using the Canny edge detector for feature extraction and enhancement of remote sensing images, IGARSS 2001. Scanning the present and resolving the future. In: Proceedings of IEEE 2001 international geoscience and remote sensing symposium, vol 5(C), pp 2298–2300Google Scholar
  3. Aubrecht C, Steinocher K, Hollaus M, Wagner W (2009) Integrating earth observation and GIScience for high resolution spatial and functional modeling of urban land use. Comput Environ Urban Syst 33(1):15–25CrossRefGoogle Scholar
  4. Aubrecht C, Ungar J, Freire S (2011) Exploring the potential of volunteered geographic information for modeling spatio-temporal characteristics of urban population A case study for Lisbon Metro using foursquare check-in data. International conference virtual city and territory 2011, Lisboa, pp 11–13Google Scholar
  5. Aubrecht C, Özceylan D, Steinnocher K, Freire S (2013) Multi-level geospatial modeling of human exposure patterns and vulnerability indicators. Nat Hazards 68:147–163CrossRefGoogle Scholar
  6. Aubrecht C, Özceylan D, Ungar J, Freire S, Steinnocher K (2016) VGDI—advancing the concept: volunteered geo-dynamic information and its benefits for population dynamics modeling. Trans GIS. doi: 10.1111/tgis.12203 Google Scholar
  7. Baatz M, Schäpe A (2000) Multiresolution segmentation—an optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geographische Informations-Verarbeitung XII. Wichmann Verlag, Karlsruhe, pp 12–23Google Scholar
  8. Belgiu M, Dragut L (2014) Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS J Photogramm Remote Sens 96:67–75CrossRefGoogle Scholar
  9. Berry JK (2007) Map analysis: understanding the spatial patterns and relationships. GeoTec Media, San FranciscoGoogle Scholar
  10. Bianchini R, Feeney G, Rajendra S (2013) Report of the International Commission on the 2012 Population and Housing Census of Chile. Technical Report November, International Commission, Santiago de ChileGoogle Scholar
  11. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16CrossRefGoogle Scholar
  12. Blaschke T, Hay G, Weng Q, Resch B (2011) Collective sensing: integrating geospatial technologies to understand urban systems—an overview. Remote Sens 3(8):1743–1776CrossRefGoogle Scholar
  13. Bruzzone L, Carlin L (2006) A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans Geosci Remote Sens 44(9):2587–2600CrossRefGoogle Scholar
  14. Bruzzone L, Chi M, Marconcini M (2006) A Novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373CrossRefGoogle Scholar
  15. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:1–47CrossRefGoogle Scholar
  16. Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process Mag 31(10):45–54CrossRefGoogle Scholar
  17. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698CrossRefGoogle Scholar
  18. Chen CH, Ho PGP (2008) Statistical pattern recognition in remote sensing. Pattern Recogn 41(9):2731–2741CrossRefGoogle Scholar
  19. Cisternas M, Torrejón F, Gorigoitia N (2012) Amending and complicating Chile’s seismic catalog with the Santiago earthquake of 7 August 1580. J S Am Earth Sci 33:102–109CrossRefGoogle Scholar
  20. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:1–25Google Scholar
  21. Cutter S (2003) Social Vulnerability to environmental hazards. Soc Sci Q 84(2):242–261CrossRefGoogle Scholar
  22. Demir B, Minello L, Bruzzone L (2014) Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method. IEEE Trans Geosci Remote Sens 52(2):1272–1284CrossRefGoogle Scholar
  23. DigitalGlobe (2010) The benefits of the eight spectral bands of WorldView-2. Whitepaper. Accesed 6 July 2015
  24. Dragut L, Tiede D, Levick SR (2010) ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geogr Inf Sci 24(6):859–871CrossRefGoogle Scholar
  25. Ehrlich D, Tenerelli P (2013) Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assessments. Nat Hazards 68:1271–1289CrossRefGoogle Scholar
  26. Ehrlich D, Zeug G, Gallego J, Gerhardinger A, Caravaggi I, Pesaresi M (2010) Quantifying the building stock from optical high-resolution satellite imagery for assessing disaster risk. Geocarto Int 25(4):281–293CrossRefGoogle Scholar
  27. Ehrlich D, Kemper T, Blaes X, Soille P (2013) Extracting building stock information from optical satellite imagery for mapping earthquake exposure and its vulnerability. Nat Hazards 68:79–95CrossRefGoogle Scholar
  28. Epifanio I, Soille P (2007) Morphological texture features for unsupervised and supervised segmentations of natural landscapes. IEEE Trans Geosci Remote Sens 45(4):1074–1083CrossRefGoogle Scholar
  29. Esch T, Thiel M, Bock M, Roth A, Dech S (2008) Improvement of image segmentation accuracy based on multiscale optimization procedure. IEEE Geosci Remote Sens Lett 5(3):463–467CrossRefGoogle Scholar
  30. Espindola GM, Camara G, Reis IA, Bins LS, Monteiro AM (2006) Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int J Remote Sens 27(14):3035–3040CrossRefGoogle Scholar
  31. Fan H, Zipf A, Fu Q, Neis P (2014) Quality assessment for building footprints data on OpenStreetMap. Int J Geogr Inf Sci 28(4):700–719CrossRefGoogle Scholar
  32. Flanagin AJ, Metzger MJ (2008) The credibility of volunteered geographic information. GeoJournal 72(3–4):137–148CrossRefGoogle Scholar
  33. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201CrossRefGoogle Scholar
  34. Foody GM, Boyd DS (2013) Using volunteered data in land cover map validation: mapping west African forests. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1305–1312CrossRefGoogle Scholar
  35. Geiß C, Taubenböck H (2013) Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap. Nat Hazards 68:7–48CrossRefGoogle Scholar
  36. Geiß C, Taubenböck H (2015) Object-based Postclassification Relearning. IEEE Geosci Remote Sens Lett 12(11):2336–2340CrossRefGoogle Scholar
  37. Geiß C, Taubenböck H, Tyagunov S, Tisch A, Post J, Lakes T (2014) Assessment of seismic building vulnerability from space. Earthq Spectra 30(4):1553–1583CrossRefGoogle Scholar
  38. Geiß C, Pelizari PA, Marconcini M, Sengara W, Edwards M, Lakes T, Taubenböck H (2015) Estimation of seismic building structural types using multi-sensor remote sensing and machine learning techniques. ISPRS J Photogramm Remote Sens 104:175–188CrossRefGoogle Scholar
  39. Geiß C, Jilge M, Lakes T, Taubenböck H (2016a) Estimation of seismic vulnerability levels of urban structures with multisensor remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens 9(5):1913–1936CrossRefGoogle Scholar
  40. Geiß C, Klotz M, Schmitt A, Taubenböck H (2016b) Object-based morphological profiles for classification of remote sensing imagery. IEEE Trans Geosci Remote Sens 54(10):5952–5963CrossRefGoogle Scholar
  41. Geofabrik (2014) OpenStreetMap Data Extracts. Accessed 5 Nov 2014
  42. Gokon H, Post J, Stein E, Martinis S, Twele A, Mück M, Geiß C, Koshimura S, Matsuoka M (2015) A method for detecting buildings destroyed by the 2011 Tohoku earthquake and tsunami using multitemporal TerraSAR-X data. IEEE Geosci Remote Sens Lett 12(6):1277–1281CrossRefGoogle Scholar
  43. Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221CrossRefGoogle Scholar
  44. Haklay M (2010) How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ Plan 37(4):682–703CrossRefGoogle Scholar
  45. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18CrossRefGoogle Scholar
  46. Hecht R, Kunze C, Hahmann S (2013) Measuring completeness of building footprints in OpenStreetMap over space and time. ISPRS Int J Geo Inf 2(4):1066–1091CrossRefGoogle Scholar
  47. Indirli M, Valpreda E, Panza G, Romanelli F, Lanzoni L, Teston S, Berti M, Bennardo SD, Rossi G (2010) Natural multi-hazard and building vulnerability assessment in the historical centers: the examples of San Giuliano di Puglia (Italy) and Valparaiso (Chile). In: Proceedings of the European commission conference “SAUVEUR”, safeguarded cultural heritage, May 31–June 3, PrahaGoogle Scholar
  48. INE (2015) Instituto Nacional de Estadísticas Chile: Estadísticas Chile. Accessed 22 Jan 2015
  49. Jokar Arsanjani J, Helbich M, Bakillah M, Loos L (2015a) The emergence and evolution of OpenStreetMap: a cellular automata approach. Int J Digit Earth 8(1):74–88CrossRefGoogle Scholar
  50. Jokar Arsanjani J, Zipf A, Mooney P, Helbich M (eds) (2015b) An introduction to OpenStreetMap in GIScience: experiences, research, applications. In: OpenStreetMap in GIScience: experiences, research, applications. Springer, SwitzerlandGoogle Scholar
  51. Jokar Arsanjani J, Mooney P, Helbich M, Zipf A (2015c) An exploration of future patterns of the contributions to OpenStreetMap and development of a contribution index. Trans GIS. doi: 10.1111/tgis.1213 Google Scholar
  52. Kavzoglu T, Colkesen I (2013) An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping. Int J Remote Sens 34(12):4224–4241CrossRefGoogle Scholar
  53. Klonner C, Barron C, Neis P, Höfle B (2014) Updating digital elevation models via change detection and fusion of human and remote sensor data in urban environments. Int J Digit Earth 8(2):151–169Google Scholar
  54. Kunze C, Hecht R (2015) Semantic enrichment of building data with volunteered geographic information to improve mappings of dwelling units and population. Comput Environ Urban Syst. doi: 10.1016/j.compenvurbsys.2015.04.002 Google Scholar
  55. Lee JS (1983) Digital image smoothing and the sigma filter. Comput Vis Graph 24(2):255–269CrossRefGoogle Scholar
  56. Leichtle T, Geiß C, Wurm M, Lakes T, Taubenböck H (2017) Unsupervised change detection in VHR remote sensing imagery—an object-based clustering approach in a dynamic urban environment. Int J Appl Earth Obs Geoinf 54:15–27CrossRefGoogle Scholar
  57. Mack B, Roscher R, Waske B (2014) Can i trust my one-class classification? Remote Sens 6(9):8779–8802CrossRefGoogle Scholar
  58. Marconcini M, Fernandez-Prieto D, Buchholz T (2014) Targeted land-cover classification. IEEE Trans Geosci Remote Sens 52(7):4173–4193CrossRefGoogle Scholar
  59. Martha TR, Kerle N, van Westen CJ, Jetten V, Kumar KV (2011) Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. IEEE Trans Geosci Remote Sens 49(12):4928–4943CrossRefGoogle Scholar
  60. Mennis J, Hultgren T (2006) Intelligent dasymetric mapping and its application to areal interpolation. Cartogr Geogr Inf Sci 33(3):179–194CrossRefGoogle Scholar
  61. Montgomery DC, Peck EA, Vining GG (2001) Introduction to linear regression analysis, 3rd edn. Wiley, New York, p 672Google Scholar
  62. Neis P, Zipf A (2012) Analyzing the contributor activity of a volunteered geographic information project—the case of OpenStreetMap. ISPRS Int J Geo Inf 1(3):146–165CrossRefGoogle Scholar
  63. Okujeni A, van der Linden S, Tits L, Somers B, Hostert P (2013) Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens Environ 137:184–197CrossRefGoogle Scholar
  64. ONEMI (2014) Ministerio de Interior y Seguridad Pública: Incendio en Valparaíso. Accessed 22 Jan 2015
  65. OSM Task Manager (2014a) #502—Valparaíso, Chile Fires/Fuegos en Valparaíso, Chile. Accessed 22 Jan 2015
  66. OSM Task Manager (2014b) #508—Valparaíso, Chile Fires 2/Valparaíso, Chile Incendios. Accessed 22 Jan 2015
  67. OSM (2015a) OpenStreetMap copyright. Accessed 26 June 2015
  68. OSM (2015b) OpenStreetMap Map Features. Accessed 13 Jan 2015
  69. OSM (2015c) Planet.osm. Accessed 22 Jan 2015
  70. Pasolli E, Melgani F, Tuia D, Pacifici F, Emery WJ (2014) SVM active learning approach for image classification using spatial information. IEEE Trans Geosci Remote Sens 52(4):2217–2233CrossRefGoogle Scholar
  71. Pesaresi M, Benediktsson J (2001) A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans Geosci Remote Sens 39(2):309–320CrossRefGoogle Scholar
  72. Pesaresi M, Huadong G, Blaes X, Ehrlich D, Ferri S, Gueguen L, Halkia M, Kauffmann M, Kemper T, Lu L, Marin-Herrera MA, Ouzounis GK, Scavazzon M, Soille P, Syrris V, Zanchetta L (2013) A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE J Sel Top Appl Earth Obs Remote Sens 6(5):2102–2131CrossRefGoogle Scholar
  73. Picozzi M, Bindi D, Pittore M, Kieling K, Parolai S (2013) Real-time risk assessment in seismic early warning and rapid response: a feasibility study in Bishkek (Kyrgyzstan). J Seismol 17:485–505CrossRefGoogle Scholar
  74. Poser K, Dransch D (2010) Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica 64(1):89–98Google Scholar
  75. Puissant A, Rougier S, Stumpf A (2014) Object-oriented mapping of urban trees using Random Forest classifiers. Int J Appl Earth Obs Geoinf 26:235–245CrossRefGoogle Scholar
  76. Richter R (1996) A spatially adaptive fast atmospheric correction algorithm. Int J Remote Sens 17(6):1201–1214CrossRefGoogle Scholar
  77. Richter R, Schläpfer D (2014) Atmospheric/topographic correction for satellite imagery, Technical reportGoogle Scholar
  78. Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630CrossRefGoogle Scholar
  79. Sánchez MA, Bosque MJ, Jiménez VC (2009) Valparaíso: su geografía, su historia y su identidad como Patrimonio de la Humanidad. Estudios Geográficos 70(266):269–293CrossRefGoogle Scholar
  80. Schnebele E, Cervone G (2013) Improving remote sensing flood assessment using volunteered geographical data. Nat Hazard Earth Syst Sci 13(3):669–677CrossRefGoogle Scholar
  81. Schneiderbauer S, Ehrlich D (2004) Risk, hazard and people’s vulnerability to natural hazards. A review of definitions, concepts and data. Joint Research Centre, European Commission, EUR 21410Google Scholar
  82. Sester M, Arsanjani JJ, Klammer R, Burghardt D, Haunert JH (2014) Integrating and generalizing volunteered geographic information. In: Duchene B, Mackaness C, Burghardt W (eds) Abstracting geographic information in a data rich world. Springer Press, ChamGoogle Scholar
  83. Sheng LSL, Xiaoyu WXW, Xinfa QXQ, Yongjian HYH (2009) Mathematical morphology edge detection algorithm of remote sensing image with high resolution. 2009 1st International conference on information science and engineering (ICISE), pp 1323–1326Google Scholar
  84. SHOA (2012) Carta de Inundación por Tsunami para Valparaíso—Viña del Mar: referida al evento de 1730. Accessed 20 Oct 2015
  85. SHOA (2015) Instrucciones Oceanográficas No 4 “Especificaciones Técnicas para la Elaboración de Cartas de Inundación por Tsunami (CITSU)”. Pub. SHOA 3204Google Scholar
  86. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222CrossRefGoogle Scholar
  87. Soille P (2004) Morphological image analysis, 2nd edn. Springer-Verlag, BerlinCrossRefGoogle Scholar
  88. Soille P, Pesaresi M (2002) Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Trans Geosci Remote Sens 40(9):2042–2055CrossRefGoogle Scholar
  89. Stiglic G, Rodriguez JJ, Kokol P (2011) Rotation of Random Forests for genomic and proteomic classification problems. Adv Exp Med Biol 696:211–221CrossRefGoogle Scholar
  90. Strunz G, Post J, Zosseder K, Wegscheider S, Mück M, Riedlinger T, Mehl H, Dech S, Birkmann J, Gebert N, Harjono H, Anwar HZ, Sumaryono Khomarudin RM, Muhari A (2011) Tsunami risk assessment in Indonesia. Nat Hazards Earth Syst Sci 11:67–82CrossRefGoogle Scholar
  91. Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using Random Forests. Remote Sens Environ 115(10):2564–2577CrossRefGoogle Scholar
  92. Stumpf A, Lachiche N, Malet JP, Kerle N, Puissant A (2014) Active learning in the spatial domain for remote sensing image classification. IEEE Trans Geosci Remote Sens 52(5):2492–2507CrossRefGoogle Scholar
  93. Sun Z, Fang H, Deng M, Chen A, Yue P, Di L (2015) Regular shape similarity index: a novel index for accurate extraction of regular objects from remote sensing images. IEEE Trans Geosci Remote Sens 53(7):3737–3748CrossRefGoogle Scholar
  94. Taubenböck H, Post J, Roth A, Zosseder K, Strunz G, Dech S (2008) A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing. Nat Hazards Earth Sys Sci 8(3):409–420CrossRefGoogle Scholar
  95. Taubenböck H, Esch T, Wurm M, Roth A, Dech S (2010) Object-based feature extraction using high spatial resolution satellite data of urban areas. J Spatial Sci 55(1):117–133CrossRefGoogle Scholar
  96. Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from space. Remote Sens Environ 117:162–176CrossRefGoogle Scholar
  97. Taubenböck H, Klotz M, Wurm M, Schmieder J, Wagner B, Wooster M, Esch T, Dech S (2013) Delineation of Central Business Districts in mega city regions using remotely sensed data. Remote Sens Environ 136:386–401CrossRefGoogle Scholar
  98. Thywissen K (2006) Core terminology of disaster reduction: a comparative glossary. In: Birkmann J (ed) Measuring vulnerability to natural hazards. United Nations University Press, New York, pp 448–496Google Scholar
  99. Timmermann P (1981) Vulnerability, resilience and the collapse of society. No. 1 in environmental monograph. Institute for Environmental Studies, University of TorontoGoogle Scholar
  100. Trimble (2014) eCognition developer 9.0 reference book. Germany Trimble Documentation, MünchenGoogle Scholar
  101. Tuia D, Pacifici F, Kanevski M, Emery WJ (2009a) Classification of very high spatial resolution imagery using mathematical morphology and support vector machines. IEEE Trans Geosci Remote Sens 47(11):3866–3879CrossRefGoogle Scholar
  102. Tuia D, Ratle F, Pacifici F, Kanevski MF, Emery WJ (2009b) Active learning methods for remote sensing image classification. IEEE Trans Geosci Remote Sens 47(7):2218–2232CrossRefGoogle Scholar
  103. Tuia D, Copa L, Kanevski M, Munoz-Mari J (2011a) A survey of active learning algorithms for supervised remote sensing image classification. IEEE J Sel Top Signal Process 5(3):606–617CrossRefGoogle Scholar
  104. Tuia D, Pasolli E, Emery WJ (2011b) Using active learning to adapt remote sensing image classifiers. Remote Sens Environ 115(9):2232–2242CrossRefGoogle Scholar
  105. UNDRO (1979) Natural disasters and vulnerability analysis. Report of Expert Group Meeting, Geneva, 9–12 July 1979Google Scholar
  106. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York, p 187CrossRefGoogle Scholar
  107. Wegscheider S, Post J, Zosseder K, Mück M, Strunz G, Riedlinger T, Muhari A, Anwar HZ (2011) Generating tsunami risk knowledge at community level as a base for planning and implementation of risk reduction strategies. Nat Hazards Earth Syst Sci 11:249–258CrossRefGoogle Scholar
  108. Wieland M, Pittore M, Parolai S, Zschau J (2012a) Exposure estimation from multi-resolution optical satellite imagery for seismic risk assessment. ISPRS Int J GeoInf 1:69–88CrossRefGoogle Scholar
  109. Wieland M, Pittore M, Parolai S, Zschau J, Moldobekov B, Begaliev U (2012b) Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging. Soil Dyn Earthq Eng 36:70–83CrossRefGoogle Scholar
  110. Wu S-S, Qiu X, Wang L (2005) Population estimation methods in GIS and remote sensing: a review. GISci Remote Sens 42(1):58–74CrossRefGoogle Scholar
  111. Xia J, Du P, He X, Chanussot J (2014) Hyperspectral remote sensing image classification based on rotation forest. IEEE Geosci Remote Sens Lett 11(1):239–243CrossRefGoogle Scholar
  112. Xia J, Chanussot J, Du P, He X (2015) Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and markov random fields. IEEE Trans Geosci Remote Sens 53(5):2532–2546CrossRefGoogle Scholar
  113. Zheng L, Wan L, Huo H, Fang T (2014) A noise removal approach for object-based classification of VHR imagery via post-classification. 2014 International conference on audio, language and image processing, pp 915–920Google Scholar
  114. Zielstra D, Zipf A (2010) A comparative study of proprietary geodata and volunteered geographic information for Germany. In: Proceedings of 13th AGILE international conference on geographic information science, vol 1, 10–14 May, GuimarãesGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Christian Geiß
    • 1
  • Anne Schauß
    • 1
    • 4
  • Torsten Riedlinger
    • 1
  • Stefan Dech
    • 1
  • Cecilia Zelaya
    • 2
  • Nicolás Guzmán
    • 2
  • Mathías A. Hube
    • 3
  • Jamal Jokar Arsanjani
    • 4
  • Hannes Taubenböck
    • 1
  1. 1.German Aerospace Center (DLR)German Remote Sensing Data Center (DFD)Oberpfaffenhofen-WeßlingGermany
  2. 2.Chilean Navy Hydrographic and Oceanographic Service (SHOA)ValparaisoChile
  3. 3.Pontificia Universidad Católica de Chile and National Research Center for Integrated Natural Disaster Management CONICYT/FONAP/15110017SantiagoChile
  4. 4.Heidelberg University, GIScience Research GroupHeidelbergGermany

Personalised recommendations