Skip to main content
Log in

Integrated geo-scientific surveys in the historical centre of Mesagne (Brindisi, Southern Italy)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The topographic and geo-morphological characteristics of the Salento peninsula (Puglia, south-eastern Italy) mean that movements of mass are extremely rare. These phenomena particularly affect certain coastal zones characterized by cliffs in rapid retreat and some unusual points in the hinterland in which collapses, generally linked to the development of karstic cavities, are common. These phenomena demonstrate the brittleness of some areas of the Salento, and they constitute a restraint on the use of the territory itself. The town of Mesagne is one of the sites at greatest geological risk in the north Salento peninsula. In the last few decades, the historical centre of Mesagne has been affected by a series of subsidence events, which have, in some cases, resulted in the partial collapse of buildings and road surfaces. The last event was in the January 2014. It caused subsidence phenomenon in a wide area, and many families have been forced from their homes. These events have had both social repercussions, causing alarm and emergency situations, and economic repercussions in terms of the expense of restoration. In order to determine the causes of the ground subsidence events, integrated geophysical surveys were undertaken in the historical centre of Mesagne. In addition, the analysis of several wells allowed the 3D model reconstruction related both to the geology and to the groundwater depth in the surveyed areas. With the purpose of estimating the dimensions of the phenomenon and its possible relationship with both specific environmental conditions (for instance groundwater depth variation) and anthropic conditions (for instance the losses in water supply and sanitation), some geophysical measurements were repeated in the time. The study led to the production of a detailed description of the subsidence causes that allows a quick action to restore security conditions in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling: simulation of flow and advective transport. Academic Press Inc, San Diego, p 381

    Google Scholar 

  • Argote-Espino D, Tejero-Andrade A, Cifuentes-Nava G, Iriarte L, Farıas S, Chavez RE, Lopez F (2013) 3D electrical prospection in the archaeological site El Pahnu, Hidalgo State, Central Mexico. J Archaeol Sci 40:1213–1223

    Article  Google Scholar 

  • Aubanel EE, Oldham KB (1985) Fourier smoothing without the fast Fourier transform. Byte 10(2):207–218

    Google Scholar 

  • Autorità di Bacino della Puglia (2006) Atto di indirizzo per la messa in sicurezza dei territori a rischio di cavità sotterranee. 7 pp [in Italian] Available at www.adb.puglia.it/public. Accessed 20 Nov 2015

  • Capizzi P, Martorana R, Messina P, Cosentino PL (2012) Geophysical and geotechnical investigations to support the restoration project of the Roman ‘Villa del Casale’, Piazza Armerina, Sicily, Italy. Near Surf Geophys 10(2):145–160. doi:10.3997/1873-0604.2011038

    Google Scholar 

  • Carbonel D, Rodríguez V, Gutiérrez F, Mccalpin JP, Linares R, Roqué C, Zarroca M, Guerrero J, Sasowsky I (2014) Evaluation of trenching, ground penetrating radar (GPR) and electrical resistivity tomography (ERT) for sinkhole characterization. Earth Surf Process Landf 39(2):214–227. doi:10.1002/esp.3440

    Article  Google Scholar 

  • Carbonel D, Rodríguez-Tribaldos V, Gutiérrez F, Galve JP, Guerrero J, Zarroca M, Roqué C, Linares R, McCalpin JP, Acosta E (2015) Investigating a damaging buried sinkhole cluster in an urban area (Zaragoza city, NE Spain) integrating multiple techniques: geomorphological surveys, DInSAR, DEMs, GPR, ERT, and trenching. Geomorphology 229:3–16. doi:10.1016/j.geomorph.2014.02.007

    Article  Google Scholar 

  • Cataldo A, Persico R, Leucci G, De Benedetto E, Cannazza G, Matera L, De Giorgi L (2014) Time domain reflectometry, ground penetrating radar and electrical resistivity tomography:a comparative analysis of alternative approaches for leak detection in underground pipes. NDT E Int 62:14–28. doi:10.1016/j.ndteint.2013.10.007

    Article  Google Scholar 

  • Chavez G, Tejero A, Alcantara MA, Chavez RE (2011) The ‘L-Array’, a tool to characterize a fracture pattern in an urban zone: in expanded abstracts: near surface 2011. Eur As Geosci Eng 1:114–155

  • Ciaranfi N, Pieri P, Ricchetti G (1992) Note alla carta geologica delle Murge e del Salento (Puglia centromeridionale). Mem Soc Geol It 41(1988):449–460 (With attached the Geological Map to scale 1:250.000)

    Google Scholar 

  • Cinque A, Patacca E, Scandone P, Tozzi M (1993) Quaternary kinematic evolution of the Southern Apennines. Relationship between surface geological features and deep lithospheric structures. Ann Geofis 36(2):249–260

    Google Scholar 

  • Clavier C, Coates G, Dumanoir J (1977) Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. In: Proceedings of the 52nd annual meeting, society of petroleum engineering, Denver, USA, Report SPE-6859-PA, preprint 16 pp

  • Colangelo G, Lapenna V, Perrone A, Piscitelli S, Telesca L (2006) 2D self potential tomographies for studying groundwater flows in the Varco d’Izzo landslide (Basilicata, southern Italy). Eng Geol 88(3):274–286. doi:10.1016/j.enggeo.2006.09.014

    Article  Google Scholar 

  • Conyers LB (2006) Innovative ground-penetrating radar methods for archaeological mapping. Archaeol Prospect 13(2):139–141

  • Gallipoli MR, Gizzi FT, Rizzo E, Masini N, Potenza MR, Albarello D, Lapenna V (2012) Site features responsible for uneven seismic effects in historical centre of Melfi (Basilicata, Southern Italy). Disaster Adv 5(3):125–137

    Google Scholar 

  • Giannotta MT, De Giorgi L, Leucci G, Matera L, Persico R, Riccardi A (2015) Preventive archaeology: the emblematic case of Ruvo di Puglia, Italy. In: 8th international workshop on advanced ground penetrating radar (IWAGPR), 7–10 July 2015. Florence

  • Giudici M, Margiotta S, Mazzone F, Negri S, Vassena C (2012) Modelling hydrostratigraphy and groundwater flow of a fractured and karst aquifer in a Mediterranean basin (Salento peninsula, southeastern Italy). Environ Earth Sci 67:1891–1907

    Article  Google Scholar 

  • Goodman D (2013) GPR slice version 7.0 manual. http://www.gpr-survey.com. Accessed June 2013

  • Goodman D, Piro S (2013) GPR remote sensing in archaeology. Springer-Verlag ed., ISBN: 978-3-642-31856-6

  • Goodman D, Steinberg J, Damiata B, Nishimure Y, Schneider K, Hiromichi H, Hisashi N (2006) GPR overlay analysis for archaeological prospection. In: Proceedings of the 11th international conference on ground penetrating radar. CD-rom, Columbus, Ohio

  • Hill HJ, Shirley OJ, Klein GE (1979) Bound water in shaley sands—its relation to Qv and other formation properties. Log Anal 20(3):3–19

    Google Scholar 

  • Juhasz I (1986) Assessment of the distribution of shale, porosity and hydrocarbon saturation in shaly sands. In: Transactions society professional well log analysts 10th European formation evaluation symposium, Ch. 15. Aberdeen, Scotland, paper AA

  • Leucci G (2015) Geofisica applicata all’archeologia e ai Beni Monumentali. Dario Flaccovio, Palermo pp 368, ISBN-978-88-98773-44-2

  • Leucci G, Negri S (2006) Use of ground penetrating radar to map subsurface archaeological features in an urban area. J Archaeol Sci 33:502–512. doi:10.1016/j.jas.2005.09.006

    Article  Google Scholar 

  • Leucci G, Negri S, Carrozzo MT, Nuzzo L (2002) Use of ground penetrating radar to map subsurface moisture variations in an urban area. J Environ Eng Geophys (JEEG) 7(2):69–77

    Article  Google Scholar 

  • Leucci G, Margiotta S, Negri S, Nuzzo L, Sansò P, Varola A (2003) Integrated geophisical, geological and geomorphological investigations for study the impact of agricultural activities on a complex karstic area. In: Proceedings del SAGEEP 2003 della environmental and engineering geophysical society. S Antonio (Texas, USA). 6–10 April 2003

  • Leucci G, Persico R, Soldovieri F (2007) Detection of Fracture From GPR data: the case history of the Cathedral of Otranto”. J Geophys Eng 4:452–461

    Article  Google Scholar 

  • Leucci G, Masini N, Persico R, Soldovieri F (2011) GPR and sonic tomography for structural restoration: the case of the Cathedral of Tricarico. J Geophys Eng 8(3):S76–S92

    Article  Google Scholar 

  • Leucci G, Parise M, Sammarco M, Scardozzi G (2016) The use of geophysical prospections to map ancient hydraulic works: the Triglio underground aqueduct (Apulia, southern Italy). Archaeological Prospection, Published online in Wiley Online Library (wileyonlinelibrary.com) Doi:10.1002/arp.1541

  • Lowrie W (2007) Fundamentals of geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Malmström VH (1969) A new approach to the classification of climate. J Geogr 68(6):351–357. doi:10.1080/00221346908981131

    Article  Google Scholar 

  • Meiser P (1962) A method of quantitative interpretation of selfpotential measurements. Geophys Prosp 10(2):203–218. doi:10.1111/j.1365-2478.1962.tb02009.x

  • Paul MK (1965) Direct interpretation of self-potential anomalies caused by inclined sheets of infinite horizontal extensions. Geophysics 30(3):418–423. doi: 10.1190/1.1439596

  • Perrier FE, Petiau G, Clerc G, Bogorodsky V, Erkul E, Jouniaux L, Lesmes D, Macnae J, Meunier JM, Morgan D, Nascimento D, Oettinger G, Schwarz G, Toh H, Valiant MJ, Vozoff K, Yazici-Cakin O (1997) A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments. J Geomagn Geoelectr 49(11–12):1677–1696. doi:10.5636/jgg.49.1677

    Article  Google Scholar 

  • Pike JG (1964) The estimation of annual run-off from meteorological data in a tropical climate. J Hydrol 2(2):116–123. doi:10.1016/0022-1694(64)90022-8

    Article  Google Scholar 

  • Piscitelli S, Rizzo E, Cristallo F, Lapenna V, Crocco L, Persico R, Soldovieri F (2007) GPR and microwave tomography for detecting shallow cavities in the historical area of Sassi of Matera (Southern Italy). Near Surf Geophys 5(4):275–285. doi:10.3997/1873-0604.2007009

    Google Scholar 

  • Sileo M (2011) Individuazione e caratterizzazione geologica, chimico-mineralogica e petrofisica di calcareniti tenere della Puglia e della Basilicata in relazione alle problematiche di provenienza e conservazione dei Beni Culturali. Ph.D. Thesis, University of Basilicata, Potenza, Italy (in Italian)

  • Tejero-Andrade A, Cifuentes G, Chavez RE, Lopez Gonzalez A, Delgado-Solorzano C (2015) ‘‘L’’ and ‘‘Corner’’ arrays for 3D electrical resistivity tomography: an alternative for urban zones. Near Surf Geophys 13:1–13. doi:10.3997/1873-0604.2015015

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. CambridgeUniversity Press, Cambridge

    Book  Google Scholar 

  • Tsokas GN, Kim JH, Tsourlos PI, Angistalis G, Vargemezis G, Stampolidis A, Diamanti N (2015) Investigating behind the lining of the Tunnel of Eupalinus in Samos (Greece) using ERT and GPR. Near Surf Geophys 13(6):571–583. doi:10.3997/1873-0604.2015012

    Google Scholar 

  • Vichabian Y, Morgan FD (2002) Self potentials in cave detection. Lead Edge 21(9):866–871. doi:10.1190/1.1508953

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Leucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leucci, G., De Giorgi, L., Gizzi, F.T. et al. Integrated geo-scientific surveys in the historical centre of Mesagne (Brindisi, Southern Italy). Nat Hazards 86 (Suppl 2), 363–383 (2017). https://doi.org/10.1007/s11069-016-2645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2645-x

Keywords

Navigation