Natural Hazards

, Volume 85, Issue 3, pp 1363–1392 | Cite as

Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities

  • Irina TuminiEmail author
  • Paula Villagra-Islas
  • Geraldine Herrmann-Lunecke
Original Paper


Facing natural disasters is a priority challenge for cities, exacerbated by increases in urban population and climate change. Improving the resilience of cities is a critical need for the international community and especially for territories exposed to multiple risks, such as Chile. Although disasters are always tragic, the recovery and reconstruction post-disaster may provide a unique opportunity to prevent future suffering, enhancing the resilience of local communities. This paper presents the analysis of two Chilean reconstruction programmes applied in Mehuin and Dichato, after the earthquake and tsunami of 22 May 1960 and 27 February 2010, respectively. In both cases, reconstruction programmes were supported by the Chilean Government, but using different approaches: one focused on providing housing for people injured in the earthquake, while the other also included urban amenities and services. This article proposes an urban morphology analysis framework; in addition, it presents the assessment of the two case studies before and after a disaster, thus evaluating their resilience. By comparing urban morphology resilience pre- and post-disaster, a discussion about the effectiveness of two reconstruction approaches is presented. Finally, conclusions and recommendations to better integrate resilience into urban planning are proposed, with the aim of opening the discussion about how to make cities more resilient to natural disasters.


Post-disaster reconstruction Urban resilience Urban morphology indicators Earthquake Tsunami 



The paper has been developed partially using the results obtained in the I-2014-11 and PEF-2014-01 and CONICYT Program-Fondecyt N.1150137 research projects.


  1. Ahern J (2011) From fail-safe to safe-to-fail: sustainability and resilience in the new urban world. Landsc Urban Plan 100:341–343. doi: 10.1016/j.landurbplan.2011.02.021 CrossRefGoogle Scholar
  2. Aliste E, Pérez S (2013) La reconstrucción del Gran Concepción: territorio y catástrofe como permanencia histórica. Geogr Norte Gd 54:199–218CrossRefGoogle Scholar
  3. Allan P, Bryant M (2011) Resilience as a framework for urbanism and recovery. J Landsc Archit 6:34–45. doi: 10.1080/18626033.2011.9723453 CrossRefGoogle Scholar
  4. Allan P, Bryant M, Wirsching C et al (2013) The influence of urban morphology on the resilience of cities following an earthquake. J Urban Des 18:242–262. doi: 10.1080/13574809.2013.772881 CrossRefGoogle Scholar
  5. Alliende Garcés MA (2011) Mehuín y mississippi: territorio en conflicto. Universidad Academia de Humanismo Cristiano, SantiagoGoogle Scholar
  6. Argüello-Rodriguez M (2004) Riesgo, vivienda y arquitectura. Conf en el Congr ARQUISUR, Univ San Juan, Argentina 1–18Google Scholar
  7. Barakat S (2003) Housing reconstruction after conflict and disaster. Humanit, Policy Gr, p 44Google Scholar
  8. BCN B del CN de C (2015) D.L. N° 369 Crea la Oficina Nacional de Emergencia, dependiente del Ministerio del InteriorGoogle Scholar
  9. Bio–Bio Gobierno Regional (2010) Plan de Reconstrucción del Borde Costero. Plan Maestro DichatoGoogle Scholar
  10. Boen T (2001) Earthquake resistant design of non-engineered buildings in Indonesia 1 byGoogle Scholar
  11. Bozza A, Asprone D, Manfredi G (2015) Developing an integrated framework to quantify resilience of urban systems against disasters. Nat Hazards 78:1729–1748. doi: 10.1007/s11069-015-1798-3 CrossRefGoogle Scholar
  12. Burak Enginoz E (2006) A study in post-disaster home environments: a comparative case study between people living in villages and in the town center of Dinar, Turkey. Accessed 3 Aug 2015
  13. Burton CG (2012) The development of metrics for community resilience to natural disastersGoogle Scholar
  14. Cartes Siade I (2013) Dichato desde la crisis a la reconstrucción. Un modelo de gestión de riego y resiliencia. Urbano 16(27):33–40Google Scholar
  15. Cervero R, Duncan M (2003) Walking, bicycling, and urban landscapes: evidence from the San Francisco Bay area. Am J Public Health 93:1478–1483. doi: 10.2105/AJPH.93.9.1478 CrossRefGoogle Scholar
  16. Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29:118–125. doi: 10.1016/j.cities.2011.08.006 CrossRefGoogle Scholar
  17. Cheng S, Ganapati E, Ganapati S (2015) Measuring disaster recovery: bouncing back or reaching the counterfactual state? Disasters 39:427–446CrossRefGoogle Scholar
  18. Childers D, Cadenasso M, Grove J et al (2015) An ecology for cities: a transformational nexus of design and ecology to advance climate change resilience and urban sustainability. Sustainability 7:3774–3791. doi: 10.3390/su7043774 CrossRefGoogle Scholar
  19. Chilean Red Cross (2014) Plan de Respuesta Comunitario de Mississippi frente a Emergencias y/o DesastresGoogle Scholar
  20. Chou JS, Ou YC, Cheng MY et al (2013) Emergency shelter capacity estimation by earthquake damage analysis. Nat Hazards 65:2031–2061. doi: 10.1007/s11069-012-0461-5 CrossRefGoogle Scholar
  21. Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84:242–261CrossRefGoogle Scholar
  22. Cutter SL, Ash KD, Emrich CT (2014) The geographies of community disaster resilience. Glob Environ Change 29:65–77. doi: 10.1016/j.gloenvcha.2014.08.005 CrossRefGoogle Scholar
  23. Duyne Barenstein J (2006) Challenges and risks in post-tsunami housing reconstruction in Tamil Nadu. Humanit Exch 44:35–36Google Scholar
  24. Folke C (2006) Resilience: the emergence of a perspective for social-ecological systems analyses. Glob Environ Change 16:253–267. doi: 10.1016/j.gloenvcha.2006.04.002 CrossRefGoogle Scholar
  25. GFDRR (2015) Resilient recovery: an imperative for sustainable development. Global Facility for Disaster Risk Reduction, WashingtonGoogle Scholar
  26. Gobierno de Chile (2010) Plan De Reconstrucción Terremoto Y Maremoto Del 27 De Febrero De 2010. 47Google Scholar
  27. GSAPP (2015) Learning from 27F: a comparative assessment of urban reconstruction processes after the 2010 earthquake in Chile. Graduated Shool of Architecture Planning and Presenrvation, SantiagoGoogle Scholar
  28. Holling CS (2001) Understanding the complexity of economic, ecological, and social systems. Ecosystems 4:390–405. doi: 10.1007/s10021-001-0101-5 CrossRefGoogle Scholar
  29. Jabareen Y (2009) Building a conceptual framework: philosophy, definitions, and procedure. Int J Qual Methods 8(4):49–62CrossRefGoogle Scholar
  30. Kallaos J, Wyckmans A, Mainguy G (2014) WP 2: taxonomy of architecture and infrastructure indicators synthesis review on resilient architecture and infrastructure indicators. 308497Google Scholar
  31. Lämmel G, Rieser M, Nagel K, et al (2010) Emergency preparedness in the case of a tsunami—evacuation analysis and traffic optimization for the Indonesian City of Padang. In: Proceedings of the 4th interantional conference on pedestrian and evacuation dynamics, WuppertalGoogle Scholar
  32. Marín Cots P (2012) Modelos urbanos sostenibles. Metodología de trabajo y resultados, MalagaGoogle Scholar
  33. MINVU (2013) Reconstrucción Urbana post 27FGoogle Scholar
  34. MINVU (2016) Reporte Regional y ComunalGoogle Scholar
  35. Municipalidad de Mariquina (2015) Municipalidad de Mariquina.
  36. Murakami H, Takimoto K, Pomonis A (2012) Tsunami evacuation process and human loss distribution in the 2011 great east Japan earthquake—a case study of Natori City, Miyagi Prefecture. In: 15th World Conference on Earthquake Engineering, 1–10Google Scholar
  37. Norris FH, Stevens SP, Pfefferbaum B et al (2008) Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. Am J Community Psychol 41:127–150. doi: 10.1007/s10464-007-9156-6 CrossRefGoogle Scholar
  38. Oliveira Panão MJN, Gonçalves HJP, Ferrão PMC (2009) Numerical analysis of the street canyon thermal conductance to improve urban design and climate. Build Environ 44:177–187. doi: 10.1016/j.buildenv.2008.02.004 CrossRefGoogle Scholar
  39. Olivera A, González G (2010) Enfoque multidimensional de la reconstrucción postdesastre de la vivienda social y el hábitat en países en vías de desarrollo: Estudios de casos en Cuba. Rev la Constr 9:53–62. doi: 10.4067/S0718-915X2010000200006 Google Scholar
  40. Pickett STA, Zhou W (2015) Global urbanization as a shifting context for applying ecological science toward the sustainable city. Ecosyst Heal Sustain 1:art5-art5. doi: 10.1890/EHS14-0014.1 Google Scholar
  41. PNUD Chile (2012) Recuperación y Reconstrucción Post DesastreGoogle Scholar
  42. Romero-Lankao P, Dodman D (2011) Cities in transition: transforming urban centers from hotbeds of GHG emissions and vulnerability to seedbeds of sustainability and resilience. Introduction and Editorial overview. Curr Opin Environ Sustain 3:113–120. doi: 10.1016/j.cosust.2011.02.002 CrossRefGoogle Scholar
  43. Rueda S (2006) Libro Verde del medio ambiente urbanoGoogle Scholar
  44. Rueda S (2012) Certificación del urbanismo ecológicoGoogle Scholar
  45. Saldivia S (2009) Terremoto y maremoto de 1960 en la comuna de Mariquina: Relatos desde la memoriaGoogle Scholar
  46. Stumpp E-M (2013) New in town? On resilience and “Resilient Cities”. Cities 32:164–166. doi: 10.1016/j.cities.2013.01.003 CrossRefGoogle Scholar
  47. SUBDERE (2011) Guía Análisis de riesgos naturales para el ordenamiento territorialGoogle Scholar
  48. The Sphere Project (2011) The Sphere Handbook: Humanitarian Charter and Minimum Standards in Humanitarian Response. Third edit, RugbyCrossRefGoogle Scholar
  49. The World Bank (2013) Building Urban ResilienceGoogle Scholar
  50. Tran TA (2015) Post-disaster housing reconstruction as a significant opportunity to building disaster resilience: a case in Vietnam. Nat Hazards 79:61–79. doi: 10.1007/s11069-015-1826-3 CrossRefGoogle Scholar
  51. UNISDR (2004) Living with risk: a global review of disaster reduction initiativesGoogle Scholar
  52. UNISDR (2005) Summary of the Hyogo Framework for Action 2005-2015. In: Word Conference on Disaster Reduction. Kobe, JapanGoogle Scholar
  53. UNISDR (2011) Análisis de riesgos de desastre en Chile. VII Plan de acción dipecho en Sudámerica 2011–2012Google Scholar
  54. UNISDR (2015) Sendai Framework for Disaster Risk Reduction 2015–2030. GenevaGoogle Scholar
  55. United Nations (2005) International Strategy for Disaster Reduction Hyogo Framework for Action 2005-2015: Building the Resilience of Nations. In: World Conference on Disaster Reduction (A/CONF.206/6). p 25Google Scholar
  56. Villagra P, Rojas C, Ohno R et al (2014) A GIS-base exploration of the relationships between open space systems and urban form for the adaptive capacity of cities after an earthquake: the cases of two Chilean cities. Appl Geogr 48:64–78. doi: 10.1016/j.apgeog.2014.01.010 CrossRefGoogle Scholar
  57. Walker B, Salt D (2006) Resilience thinking: sustaining ecosystems and people in a changing world. WashingtonGoogle Scholar
  58. Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. Ecol Soc 9:5CrossRefGoogle Scholar
  59. Walker B, Abel N, Andreoni F, et al (2015) General Resilience. A discussion paper based on insights from a catchment management area workshop in south eastern Australia, 1–14Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Planning and Urban DesignBío-Bío UniversityConcepciónChile
  2. 2.Laboratory of Landscape and Urban Resilience, Institute of Environmental Sciences and EvolutionAustral University of ChileRegión de Los RíosChile
  3. 3.Faculty of Architecture, Art and DesignDiego Portales UniversitySantiagoChile

Personalised recommendations