Skip to main content
Log in

Fractal analysis of the ground-recorded ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (M W = 9): discriminating possible earthquake precursors from space-sourced disturbances

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The fractal characteristics of the ultra-low-frequency (ULF) magnetic field variations recorded prior to the Tohoku earthquake (EQ) with M W = 9 which happened on 11 March 2011 are studied in this article with the use of detrended fluctuation analysis and Higuchi fractal dimension algorithm. In the specific study, we use for our calculations only nighttime (LT = 3 a.m. ± 2 h) data because of their lowest contamination by industrial noise. A key aspect of our analysis is the investigation about any possible correlation of the ULF magnetic field variations or their calculated fractal characteristics with geomagnetic indices. Different preprocessing approaches are examined aiming at the minimization of any possible influences from global phenomena in the fractal analysis results, while in the same time retaining the scale-invariant character of ULF magnetic field variations after preprocessing. The obtained fractal analysis results imply locally driven change in the fractal characteristics of the ULF data prior to the Tohoku EQ, which is compatible with the change that has been reported prior to other large EQs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alperovich L, Zheludev V, Hayakawa M (2003) Use of wavelet analysis for detection of seismogenic ULF emissions. Radio Sci 38(6):1093. doi:10.1029/2002RS002687

    Article  Google Scholar 

  • Bak P (1996) How nature works. Springer, New York

    Book  Google Scholar 

  • Bak P (1997) How nature works: the science of self-organized criticality. Oxford University Press, Copernicus, New York

    Google Scholar 

  • Bak P, Tang C (1989) Earthquakes as a self-organized critical phenomenon. J Geophys Res 94(B11):15635–15637

    Article  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:381–384

    Article  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev 38(1):364–374

    Article  Google Scholar 

  • Buldyrev SV, Goldberger AL, Havlin S, Mantegna RN, Matsa ME, Peng C-K, Simons M, Stanley HE (1995) Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys Rev E 51:5084–5091

    Article  Google Scholar 

  • Campbell WH (2009) Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake. J Geophys Res 114:A05307. doi:10.1029/2008JA013932

    Google Scholar 

  • Chavez O, Millan-Almaraz JR, Perez-Enriquez R, Arzate-Flores JA, Kotsarenko A, Cruz-Abeyro JA, Rojas E (2010) Detection of ULF geomagnetic signals associated with seismic events in Central Mexico using Discrete Wavelet Transform. Nat Hazards Earth Syst Sci 10:2557–2564. doi:10.5194/nhess-10-2557-2010

    Article  Google Scholar 

  • Contoyiannis Y, Potirakis SM, Eftaxias K, Hayakawa M, Schekotov A (2016) Intermittent criticality revealed in ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (MW = 9). Phys A 452:19–28

    Article  Google Scholar 

  • Currie JL, Waters CL (2014) On the use of geomagnetic indices and ULF waves for earthquake precursor signatures. J Geophys Res Space Phys 119:992–1003. doi:10.1002/2013JA019530

    Article  Google Scholar 

  • Danilov D, Zhigljavsky A (eds) (1997) Principal components of time series: the ‘caterpillar’ method. University of St. Petersburg Press, St. Petersburg (in Russian)

    Google Scholar 

  • Donner RV, Potirakis SM, Barbosa SM, Matos JA, Pereira AJSC, Neves LJPF (2015) Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity. Eur Phys J Spec Top 224(4):741–762. doi:10.1140/epjst/e2015-02404-1

    Article  Google Scholar 

  • Eftaxias K, Potirakis SM (2013) Current challenges for pre-earthquake electromagnetic emissions: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process. Nonlinear Process Geophys 20:771–792. doi:10.5194/npg-20-771-2013

    Article  Google Scholar 

  • Eftaxias K, Potirakis SM, Chelidze T (2013) On the puzzling feature of the silence of precursory electromagnetic emissions. Nat Hazards Earth Syst Sci 13:2381–2397. doi:10.5194/nhess-13-2381-2013

    Article  Google Scholar 

  • Elsner JB, Tsonis AA (eds) (1996) Singular spectral analysis. A new tool in time series analysis. Springer, New York

    Google Scholar 

  • Evans JD (1996) Straightforward statistics for the behavioral sciences. Brooks/Cole Pub. Co, Pacific Grove

    Google Scholar 

  • Febriani F, Han P, Yoshino C, Hattori K, Nurdiyanto B, Effendi N, Maulana I, Gaffar E (2014) Ultra low frequency (ULF) electromagnetic anomalies associated with large earthquakes in Java Island, Indonesia by using wavelet transform and detrended fluctuation analysis. Nat Hazards Earth Syst Sci 14:789–798. doi:10.5194/nhess-14-789-2014

    Article  Google Scholar 

  • Fraser-Smith AC (2009) The ultralow-frequency magnetic fields associated with and preceding earthquakes. In: Hayakawa M (ed) Electromagnetic phenomena associated with earthquakes. Transworld Research Network, Trivandrum, pp 1–20

    Google Scholar 

  • Fraser-Smith AC, Bernardi A, McGill PR, Ladd ME, Helliwell RA, Villard OG Jr (1990) Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys Res Lett 17:1465–1468

    Article  Google Scholar 

  • Frühauff D, Glassmeier K-H, Lockwood M, Heyner D (2015) Extracting planetary waves from geomagnetic time series using Empirical Mode Decomposition. J Atmos Sol Terr Phys 129:6–12. doi:10.1016/j.jastp.2015.04.002

    Article  Google Scholar 

  • Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Gotoh K, Hayakawa M, Smirnova N (2003) Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June-August 2000. Nat Hazards Earth Syst Sci 3:229–236

    Article  Google Scholar 

  • Gotoh K, Hayakawa M, Smirnova NA, Hattori K (2004) Fractal analysis of seismogenic ULF emissions. Phys Chem Earth 29:419–424

    Article  Google Scholar 

  • Han P, Hattori K, Xu G, Ashida R, Chen C-H, Febriani F, Yamaguchi H (2015) Further investigations of geomagnetic diurnal variations associated with the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). J Asian Earth Sci 114(2):321–326. doi:10.1016/j.jseaes.2015.02.022

    Article  Google Scholar 

  • Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5:239–257

    Google Scholar 

  • Hattori K (2004) ULF geomagnetic changes associated with large earthquakes. Terr Atmos Ocean Sci 15:329–360

    Google Scholar 

  • Hattori K (2013) ULF geomagnetic changes associated with major earthquakes. In: Hayakawa M (ed) Earthquake prediction studies: seismo electromagnetics. TERRAPUB, Tokyo, pp 129–152

    Google Scholar 

  • Hattori K, Serita A, Gotoh K, Yoshino C, Harada M, Isezaki N, Hayakawa M (2004) ULF geomagnetic anomaly associated with 2000 Izu Islands earthquake swarm, Japan. Phys Chem Earth 29(4–9):425–435. doi:10.1016/j.pce.2003.11.014

    Article  Google Scholar 

  • Hattori K, Serita A, Yoshino C, Hayakawa M, Isezaki N (2006) Singular spectral analysis and principal component analysis for signal discrimination of ULF geomagnetic data associated with 2000 Izu Island earthquake swarm. Phys Chem Earth 31:281–291. doi:10.1016/j.pce.2006.02.034

    Article  Google Scholar 

  • Hattori K, Han P, Yoshino C, Febriani F, Yamaguchi H, Chen C-H (2013) Investigation of ULF seismo-magnetic phenomena in Kanto, Japan during 2000–2010: case studies and statistical studies. Surv Geophys 34(3):293–316. doi:10.1007/s10712-012-9215-x

    Article  Google Scholar 

  • Hayakawa M (ed) (2009) Electromagnetic phenomena associated with earthquakes. Transworld Research Network, Trivandrum

    Google Scholar 

  • Hayakawa M (ed) (2012) The Frontier of Earthquake Prediction Studies. Nihon-Senmontosho-Shuppan, Tokyo

    Google Scholar 

  • Hayakawa M (ed) (2013) Earthquake prediction studies: seismo electromagnetics. TERRAPUB, Tokyo

    Google Scholar 

  • Hayakawa M, Ida Y (2008) Fractal (mono- and multi-) analysis for the ULF data during the 1993 Guam earthquake for the study of prefreacture criticality. Curr Dev Theory Appl Wavelets 2(2):159–174

    Google Scholar 

  • Hayakawa M, Molchanov OA (eds) (2002) Seismo electromagnetics: lithosphere–atmosphere–ionosphere coupling. TERRAPUB, Tokyo

    Google Scholar 

  • Hayakawa M, Kawate R, Molchanov OA, Yumoto K (1996a) Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys Res Lett 23:241–244

    Article  Google Scholar 

  • Hayakawa M, Molchanov OA, Ondoh T, Kawai E (1996b) The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J Comm Res Lab Tokyo 43:169–180

    Google Scholar 

  • Hayakawa M, Ito T, Smirnova N (1999) Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on August 8, 1993. Geophys Res Lett 26(18):2797–2800

    Article  Google Scholar 

  • Hayakawa M, Hattori K, Nickolaenko AP, Rabinowicz LM (2004) Relation between the energy of earthquake swarm and the Hurst exponent of random variations of the geomagnetic field. Phys Chem Earth 29:379–387. doi:10.1016/j.pce.2003.07.001

    Article  Google Scholar 

  • Hayakawa M, Hattori K, Ohta K (2007) Monitoring of ULF (ultra-low-frequency) geomagnetic variations associated with earthquakes. Sensors 7:1108–1122

    Article  Google Scholar 

  • Hayakawa M, Schekotov A, Fedorov E, Hobara Y (2013) On the ultra-low-frequency magnetic field depression for three huge oceanic earthquakes in Japan and in the Kurile Islands. Earth Sci Res 2(1):33–42. doi:10.5539/esr.v2n1p33

    Google Scholar 

  • Hayakawa M, Schekotov A, Potirakis S, Eftaxias K (2015) Criticality features in ULF magnetic fields prior to the 2011 Tohoku earthquake. Proc Japan Acad Ser B 91:25–30. doi:10.2183/pjab.91.25

    Article  Google Scholar 

  • Heneghan C, McDarby G (2000) Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys Rev E 62:6103–6110

    Article  Google Scholar 

  • Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Phys D 31:277–283

    Article  Google Scholar 

  • Hurst H (1951) Long term storage capacity of reservoirs. Trans Am Soc Civ Eng 116:770–808

    Google Scholar 

  • Ida Y, Hayakawa M (2006) Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality. Nonlinear Process Geophys 13:409–412

    Article  Google Scholar 

  • Ida Y, Hayakawa M, Adalev A, Gotoh K (2005) Multifractal analysis for the ULF geomagnetic data during the 1993 Guam earthquake. Nonlinear Process Geophys 12:157–162

    Article  Google Scholar 

  • Ida Y, Hayakawa M, Gotoh K (2006) Multifractal analysis for the ULF geomagnetic data during the Guam earthquake. IEEJ Trans Fundam Mater 126(4):215–219

    Article  Google Scholar 

  • Ida Y, Hayakawa M, Timashev S (2007) Application of different signal analysis methods to the ULF data for the 1993 Guam earthquake. Nat Hazards Earth Syst Sci 7:479–484

    Article  Google Scholar 

  • Ida Y, Yang D, Li Q, Sun H, Hayakawa M (2012) Fractal analysis of ULF electromagnetic emissions in possible association with earthquakes in China. Nonlinear Process Geophys 19:577–583

    Article  Google Scholar 

  • Jackson LP, Mound JE (2010) Geomagnetic variation on decadal time scales: what can we learn from empirical mode decomposition? Geophys Res Lett 37:L14307. doi:10.1029/2010GL043455

    Article  Google Scholar 

  • Jensen HJ (1998) Self-organized criticality. Cambridge Lecture Notes in Physics, vol 10. Cambridge University Press, Cambridge, pp 1–153

    Google Scholar 

  • Kopytenko YuA, Matiashvili TG, Voronov PM, Kopytenko EA, Molchanov OA (1993) Detection of ultra-low frequency emissions connected with the Spitak earthquake and its aftershock activity based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys Earth Planet Inter 77:85–95

    Article  Google Scholar 

  • Kopytenko YuA, Ismaguilov VS, Nikitina LV (2009) Study of local anomalies of ULF magnetic disturbances before strong earthquakes and magnetic fields induced by tsunami. In: Hayakawa M (ed) Electromagnetic phenomena associated with earthquakes. Transworld Research Network, Trivandrum, pp 21–40

    Google Scholar 

  • Kopytenko YA, Ismaguilov VS, Hattori K (2012) Hayakawa M (2012) Anomaly disturbances of the magnetic fields before the strong earthquake in Japan on March 11, 2011. Ann Geophys 55(1):101–107. doi:10.4401/ag-5260

    Google Scholar 

  • Kotsarenko A, Molchanov O, Hayakawa M, Koshevaya S, Grimalsky V, Perez Enriquez R, Lopez Cruz-Abeyro JA (2005) Investigation of ULF magnetic anomaly during Izu earthquake swarm and Miyakejima volcano eruption at summer 2000, Japan. Nat Hazards Earth Syst Sci 5:63–69. doi:10.5194/nhess-5-63-2005

    Article  Google Scholar 

  • Mandelbrot BB, Wallis JR (1968) Noah, Joseph and operational hydrology. Water Resour Res 4:909–918

    Article  Google Scholar 

  • Masci F (2011a) On the recent reaffirmation of ULF magnetic earthquakes precursors. Nat Hazards Earth Syst Sci 11:2193–2198. doi:10.5194/nhess-11-2193-2011

    Article  Google Scholar 

  • Masci F (2011b) On the seismogenic increase of the ratio of the ULF geomagnetic field components. Phys Earth Planet Inter 187:19–32. doi:10.1016/j.pepi.2011.05.001

    Article  Google Scholar 

  • Masci F, Thomas JN (2015) Are there new findings in the search for ULF magnetic precursors to earthquakes? J Geophys Res Space Phys 120:10289–10304. doi:10.1002/2015JA021336

    Article  Google Scholar 

  • Mezentsev AYu, Hayakawa M, Hattori K (2009) Fractal ULF signatures related to seismic processes. J Atmos Electr 29(2):81–93

    Google Scholar 

  • Molchanov OA, Hayakawa M (2008) Seismo electromagnetics and related phenomena: history and latest results. TERRAPUB, Tokyo

    Google Scholar 

  • Molchanov OA, Kopytenko YuA, Voronov PM, Kopytenko EA, Matiashvili TG, Fraser-Smith AC, Bernardi A (1992) Results of ULF magnetic field measurements near the epicenters of the Spitak (M = 6.9) and the Loma-Prieta (M = 7.1) earthquakes: comparative analysis. Geophys Res Lett 19:1495–1498

    Article  Google Scholar 

  • Moore GW (1964) Magnetic disturbances preceding the 1964 Alaska earthquake. Nature 203:508–509

    Article  Google Scholar 

  • Ohta K, Izutsu J, Schekotov A, Hayakawa M (2013) The ULF/ELF electromagnetic radiation before the 11 March 2011 Japanese earthquake. Radio Sci 48:589–596. doi:10.1002/rds.20064

    Article  Google Scholar 

  • Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  Google Scholar 

  • Peng C-K, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87

    Article  Google Scholar 

  • Pulinets S, Boyarchuk K (2004) Ionospheric precursors of earthquakes. Springer, Berlin

    Google Scholar 

  • Rawat G (2014) Characteristic ULF band magnetic field variations at MPGO, Ghuttu for the 20 June 2011 earthquake in Garhwal Himalaya. Curr Sci (00113891) 106(1):88–93

    Google Scholar 

  • Rawat G, Chauhan V, Dhamodharan S (2016) Fractal dimension variability in ULF magnetic field with reference to local earthquakes at MPGO, Ghuttu. Geomat Nat Hazards Risk. doi:10.1080/19475705.2015.1137242

    Google Scholar 

  • Rong Y-M, Wang Q, Ding X, Huang Q-H (2012) Non-uniform scaling behavior in Ultra-Low-Frequency (ULF) geomagnetic signals possibly associated with the 2011 M9.0 Tohoku earthquake. Chinese. J Geophys 55(11):3709–3717. doi:10.6038/j.issn.0001-5733.2012.11.018 (in Chinese)

    Google Scholar 

  • Schekotov A, Fedorov E, Hobara Y, Hayakawa M (2013) ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake. J Atmos Electr 33(1):41–51

    Google Scholar 

  • Schekotov A, Zhou HJ, Quiao XL, Hayakawa M (2016) ULF/ELF atmospheric radiation in possible association to the 2011 Tohoku earthquake as observed in China. Earth Sci Res 5(2):47–58. doi:10.5539/esr.v5n2p47

    Article  Google Scholar 

  • Serita A, Hattori K, Yoshino C, Hayakawa M, Isezaki N (2005) Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes. Nat Hazards Earth Syst Sci 5:685–689

    Article  Google Scholar 

  • Shadkhoo S, Ghanbarnejad F, Jafari GR, Tabar MRR (2009) Scaling behavior of earthquakes’ inter-events time series. Cent Eur J Phys 7(3):620–623

    Google Scholar 

  • Skeberis C, Xenos DT, Xenos TD, Contadakis ME, Arabelos D, Chatzopoulou G (2012) Application of empirical mode decomposition to very low frequency signals for identification of seismic-ionospheric precursor phenomena. Ann Geophys 55(1):199–205. doi:10.4401/ag-5312

    Google Scholar 

  • Smirnova NA (1999) The peculiarities of ground-observed geomagnetic pulsations as the background for detection of ULF emissions of seismic origin. In: Hayakawa M (ed) Atmospheric and ionospheric electromagnetic phenomena associated with Earthquakes. Terra Scientific Publishing Company, Tokyo, pp 215–232

    Google Scholar 

  • Smirnova NA, Hayakawa M (2007) Fractal characteristics of the ground-observed ULF emissions in relation to geomagnetic and seismic activities. J Atmos Sol Terr Phys 69:1833–1841

    Article  Google Scholar 

  • Smirnova N, Hayakawa M, Ito T (1999) Structure of the ULF geomagnetic noise in a seismoactive zone and its relation to the earthquake. In: Surya C (ed) Noise in Physical Systems and 1/f Fluctuations (ICNF’99, Hong Kong, August 23–26). World Scientific, Singapore, pp 471–474

    Google Scholar 

  • Smirnova N, Hayakawa M, Gotoh K, Volobuev D (2001) Scaling chracteristics of ULF geomagnetic field at the Guam seismoactive area and their dynamics in relation to the earthquake. Nat Hazards Earth Syst Sci 1:119–126

    Article  Google Scholar 

  • Smirnova N, Hayakawa M, Gotoh K (2004) Precursory behavior of fractal characteristics of the ULF electromagnetic fields in seismic active zones before strong earthquakes. Phys Chem Earth 29:445–451

    Article  Google Scholar 

  • Smirnova NA, Kiyashchenko DA, Troyan VN, Hayakawa M (2010) Fractal approach to search for the earthquake precursory signatures in geophysical time series. In: Semenov VS (ed) Proceedings of the 8th international conference “problems of geocosmos”. SPb., ISBN 978-5-9651-0504-5, pp 433–438

  • Smirnova NA, Kiyashchenko DA, Troyan VN, Hayakawa M (2013) Multifractal approach to study the earthquake precursory signatures using the ground-based observations. Rev Appl Phys 2(3):58–67

    Google Scholar 

  • Sornette A, Sornette D (1989) Self-organized criticality and earthquakes. Europhys Lett 9(3):197–202

    Article  Google Scholar 

  • Takla EM, Yumoto K, Okano S, Uozumi T, Abe S (2013) The signature of the 2011 Tohoku mega earthquake on the geomagnetic field measurements in Japan. NRIAG J Astron Geophys 2:185–195. doi:10.1016/j.nrjag.2013.08.001

    Article  Google Scholar 

  • Telesca L, Lapenna V, Macchiato M, Hattori K (2008) Investigating non-uniform scaling behavior in Ultra Low Frequency (ULF) earthquake-related geomagnetic signals. Earth Planet Sci Lett 268:219–224

    Article  Google Scholar 

  • Thomas JN, Love JJ, Johnston MJS, Yumoto K (2009a) On the reported magnetic precursor of the 1993 Guam earthquake. Geophys Res Lett 36:L16301. doi:10.1029/2009GL039020

    Article  Google Scholar 

  • Thomas JN, Love JJ, Johnston MJS (2009b) On the reported magnetic precursor of the 1989 Loma Prieta earthquake. Phys Earth Planet Inter 173:207–215

    Article  Google Scholar 

  • Troyan VN, Hayakawa M (2002) Inverse geophysical problems. TERRAPUB, Tokyo

    Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Varotsos PA, Sarlis NV, Skordas ES (2002) Long-range correlations in the electric signals that precede rupture. Phys Rev E 66:011902. doi:10.1103/PhysRevE.66.011902

    Article  Google Scholar 

  • Varotsos PA, Sarlis NV, Skordas ES, Tanaka HK, Lazaridou MS (2006) Entropy of seismic electric signals: analysis in the natural time under time reversal. Phys Rev E 73:031114. doi:10.1103/PhysRevE.73.031114

    Article  Google Scholar 

  • Varotsos PA, Sarlis NV, Skordas ES (2011) Natural time analysis: the new view of time. Springer, Berlin

    Book  Google Scholar 

  • Xu G, Han P, Huang Q, Hattori K, Febriani F, Yamaguchi H (2013) Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake (Mw9. 0). J Asian Earth Sci 77:59–65. doi:10.1016/j.jseaes.2013.08.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelios M. Potirakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potirakis, S.M., Hayakawa, M. & Schekotov, A. Fractal analysis of the ground-recorded ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (M W = 9): discriminating possible earthquake precursors from space-sourced disturbances. Nat Hazards 85, 59–86 (2017). https://doi.org/10.1007/s11069-016-2558-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2558-8

Keywords

Navigation