Skip to main content

Advertisement

Log in

A cascading flash flood guidance system: development and application in Yunnan Province, China

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Yunnan Province, located in Southwest China, suffers from massive flash flood hazards due to its complex mountainous hydrometeorology. However, traditional flash flood forecasting approaches can hardly provide an effective and comprehensive guide. Aiming to build a multilevel guidance system of flash flood warning for Yunnan, this study develops a Cascading Flash Flood Guidance (CFFG) system, progressively from the Flash Flood Potential Index (FFPI), the Flash Flood Hazard Index (FFHI) to the Flash Flood Risk Index (FFRI). First, land cover and vegetation cover data from MODIS products, the Harmonized World Soil Database soil map, and SRTM slope data are used in generating a composite FFPI map. In this process, an integrated approach of the analytic hierarchy process and the information entropy theory is used as a weighting method. Then, three standardized rainfall amounts (average daily amount in flood seasons, maximum 6 h and maximum 24 h amount) are added to derive FFHI. Further inclusion of GDP, population and flood prevention measures as vulnerability factors for the FFRI enabled prediction of the flash flood risk. The spatial patterns of the CFFG indices indicate that counties in east Yunnan are most susceptible to flash floods, which agrees with the distribution of observed flash flood events. Compared to other approaches, the CFFG system could be a useful prototype in mapping characteristics of China’s flash floods in a cascading manner (i.e., potential, hazard and risk) for users at different administrative levels (e.g., town, county, province and even nation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adger V (2006) Vulnerability. Glob Environ Change 16:268–281

    Article  Google Scholar 

  • Boyle DP (2001) Multicriteria calibration of hydrologic models. Dissertation, Department of Hydrology and Water Resources, University of Arizona

  • Brans JP, Vincke P, Mareschal B (1986) How to select and how to rank projects: the PROMETHEE method. Eur J Oper Res 24(2):228–238. doi:10.1016/0377-2217(86)90044-5

    Article  Google Scholar 

  • Brooks N (2003) Vulnerability, risk and adaptation: a conceptual framework. Tyndall Centre for Climate Change Research Working Paper 38:1–16

  • Büchele B, Kreibich H, Kron A, Thieken A, Ihringer J, Oberle P, Nestmann F (2006) Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks. Nat Hazards Earth Syst Sci 6(4):485–503. doi:10.5194/nhess-6-485-2006

    Article  Google Scholar 

  • Bumash RJC, Ferral RL, McGuire RA (1973) A generalized streamflow simulation system-conceptual modeling for digital computers. US Department of Commerce, National Weather Service and State of California, Department of Water Resources

  • Chen H, Yang D, Hong Y, Gourley JJ, Zhang Y (2013) Hydrological data assimilation with the ensemble square-root-filter: use of streamflow observations to update model states for real-time flash flood forecasting. Adv Water Resour 59:209–220. doi:10.1016/j.advwatres.2013.06.010

    Article  Google Scholar 

  • Clark RA, Gourley JJ, Flamig ZL, Hong Y, Clark E (2014) CONUS-wide evaluation of national weather service flash flood guidance products. Weather Forecast 29(2):377–392. doi:10.1175/WAF-D-12-00124.1

    Article  Google Scholar 

  • Creutin JD, Borga M, Gruntfest E, Lutoff C, Zoccatelli D, Ruin I (2013) A space and time framework for analyzing human anticipation of flash floods. J Hydrol 482:14–24. doi:10.1016/j.jhydrol.2012.11.009

    Article  Google Scholar 

  • De Roo A, Barredo JI, Lavalle C, Bodis K, Bonk R (2007) Potential flood hazard and risk mapping at pan-European scale. In: Digital terrain modelling development and applications in a policy support environment, pp 183–202

  • DHA U (1992) Internationally agreed glossary of basic terms related to disaster management. UN DHA (United Nations Department of Humanitarian Affairs), Geneva

  • Fuchs S (2009) Susceptibility versus resilience to mountain hazards in Austria-paradigms of vulnerability revisited. Nat Hazards Earth Syst Sci 9:337–352

    Article  Google Scholar 

  • Georgakakos KP (1987) Real-time flash flood prediction. J Geophys Res Atmos 92(D8):9615–9629

    Article  Google Scholar 

  • Hapuarachchi HAP, Wang QJ, Pagano TC (2011) A review of advances in flash flood forecasting. Hydrol Process 25(18):2771–2784. doi:10.1002/hyp.8040

    Article  Google Scholar 

  • Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43(2):245–256. doi:10.1007/s11069-006-9104-z

    Article  Google Scholar 

  • Hong Y, Adhikari P, Gourley JJ (2013) Flash flood. Encyclopedia of natural hazards. Springer, The Netherlands, pp 324–325

    Book  Google Scholar 

  • Jiang JH, Shao LP (2010) Standard of mountain flood warning based on the precipitation observation data. J Hydraul Eng 41(4):458–463 (in Chinese)

    Google Scholar 

  • Jiang W, Deng L, Chen L, Wu J, Li J (2009) Risk assessment and validation of flood disaster based on fuzzy mathematics. Prog Nat Sci 19(10):1419–1425. doi:10.1016/j.pnsc.2008.12.010

    Article  Google Scholar 

  • Karmeshu (2003) Entropy measures, maximum entropy principle and emerging applications. Springer Science & Business Media, vol 119

  • Khan SI, Adhikari P, Hong Y, Vergara H et al (2011) Hydroclimatology of Lake Victoria region using hydrologic model and satellite remote sensing data. Hydrol Earth Syst Sci 15(1):107–117. doi:10.5194/hess-15-107-2011

    Article  Google Scholar 

  • Koren V, Reed S, Smith M, Zhang Z, Seo DJ (2004) Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. J Hydrol 291(3):297–318. doi:10.1016/j.jhydrol.2003.12.039

    Article  Google Scholar 

  • Lee G, Jun KS, Chung ES (2013) Integrated multi-criteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique. Nat Hazards Earth Syst Sci 13(5):1293–1312. doi:10.5194/nhess-13-1293-2013

    Article  Google Scholar 

  • Li K, Wu S, Dai E, Xu Z (2012) Flood loss analysis and quantitative risk assessment in China. Nat Hazards 63(2):737–760. doi:10.1007/s11069-012-0180-y

    Article  Google Scholar 

  • Lin X, Lin Q, Wang M, Zhao Y, Li Y (2015) Hazard zoning of flash flood in mountainous administrative region of town: a case study on Tiaoshi Town. J Nat Disasters 3(24):90–96 (in Chinese)

    Google Scholar 

  • Linstone HA, Turoff M (eds) (1975) The Delphi method: Techniques and applications, vol 29. Addison-Wesley, Reading

    Google Scholar 

  • Long D, Shen YJ, Sun AY, Hong Y, Longuevergne L, Yang YT, Li B, Chen L (2014) Drought and flood monitoring over a large karst plateau in Southwest China using extended GRACE data. Remote Sens Environ 155:145–160

  • Mogil HM, Monro JC, Groper HS (1978) NWS’s flash flood warning and disaster preparedness programs. Bull Am Meteorol Soc 59(6):690–699. doi:10.1175/1520-0477(1978)059<0690:NFFWAD>2.0.CO;2

    Article  Google Scholar 

  • Papaioannou G, Vasiliades L, Loukas A (2015) Multi-criteria analysis framework for potential flood prone areas mapping. Water Resour Manage 29(2):399–418. doi:10.1007/s11269-014-0817-6

    Article  Google Scholar 

  • Parsons A (2003) Burned area emergency rehabilitation (BAER) soil burn severity definitions and mapping guidelines Draft. USDA forest service, Rocky Mountain Research Station, Missoula

  • Pradhan B (2010) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spatial Hydrol 9(2):1–18

  • River Forecast Center Development Management Team (2003) Flash flood guidance improvement team-final report. Report to the operations subcommittee of the NWS corporate board. http://www.nws.noaa.gov/oh/rfcdev/docs/ffgitreport.pdf

  • Saaty RW (1987) The analytic hierarchy process-what it is and how it is used. Math Modell 9(3):161–176

    Article  Google Scholar 

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26

    Article  Google Scholar 

  • Sahoo GB, Ray C (2006) Flow forecasting for a Hawaii stream using rating curves and neural networks. J Hydrol 317(1):63–80. doi:10.1016/j.jhydrol.2005.05.008

    Article  Google Scholar 

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm Eng Remote Sens 70(5):617–625

    Article  Google Scholar 

  • Scheuer S, Haase D, Meyer V (2011) Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Nat Hazards 58(2):731–751. doi:10.1007/s11069-010-9666-7

    Article  Google Scholar 

  • Schmidt JA, Anderson AJ, Paul JH (2007) Spatially-variable, physically-derived flash flood guidance. AMS 21st conference on hydrology, San Antonio, TX B, vol 6

  • Sinha R, Bapalu GV, Singh LK, Rath B (2008) Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of analytical hierarchy process (AHP). J Indian Soc Remote Sens 36(4):335–349. doi:10.1007/s12524-008-0034-y

    Article  Google Scholar 

  • Smith G (2003) Flash flood potential: determining the hydrologic response of FFMP basins to heavy rain by analyzing their physiographic characteristics. Available from the NWS Colorado Basin River Forecast Center. http://www.cbrfc.noaa.gov/papers/ffp_wpap.pdf

  • Smith GE (2010) Development of a flash flood potential index using physiographic data sets within a geographic information system. Doctoral dissertation, University of Utah

  • Store R, Kangas J (2001) Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modelling. Landsc Urban Plann 55(2):79–93. doi:10.1016/S0169-2046(01)00120-7

    Article  Google Scholar 

  • Sun D, Zhang D, Cheng X (2012) Framework of national non-structural measures for flash Flood disaster prevention in China. Water 4(1):272–282. doi:10.3390/w4010272

    Article  Google Scholar 

  • Sweeney TL (1992) Modernized areal flash flood guidance. US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Office of Hydrology

  • Sweeney TL, Baumgardner TF (1999) Modernized flash flood guidance. NWS Office of Hydrology, Web Site Version, Updated 8, pp 16–99

  • Tan H, Ping W, Yang T, Li S, Liu A, Zhou J, Sun Z (2007) The synthetic evaluation model for analysis of flooding hazards. Eur J Public Health 17(2):206–210. doi:10.1093/eurpub/ckl067

    Article  Google Scholar 

  • Tang C, Zhu J (2005) A GIS based regional torrent risk zonation. Acta Geograph Sinica 60(1):87–94 (in Chinese)

    Google Scholar 

  • Vaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169(1):1–29. doi:10.1016/j.ejor.2004.04.028

    Article  Google Scholar 

  • Villagran de Leon JC (2006) Vulnerability—a conceptual and methodological review. UNU EHS, no 4/2006, Bonn, Germany

  • Wang J, Hong Y, Li L, Gourley JJ, Khan SI, Yilmaz KK et al (2011a) The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol Sci J 56(1):84–98. doi:10.1080/02626667.2010.543087

    Article  Google Scholar 

  • Wang Y, Li Z, Tang Z, Zeng G (2011b) A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resour Manage 25(13):3465–3484. doi:10.1007/s11269-011-9866-2

    Article  Google Scholar 

  • Zahedi F (1986) The analytic hierarchy process-a survey of the method and its applications. Interfaces 16(4):96–108

    Article  Google Scholar 

  • Zhang X, Luo J, Chen L et al (2000) Zoning of Chinese flood hazard risk. J Hydraul Eng 3:3–9 (in Chinese)

    Google Scholar 

  • Zhou G, Yan H (2007) The spatial and temporal distribution feature of precipitation field over Yunnan. J Yunnan Univ Nat Sci 29(1):55 (in Chinese)

    Google Scholar 

  • Zou ZH, Yi Y, Sun JN (2006) Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J Environ Sci 18(5):1020–1023. doi:10.1016/S1001-0742(06)60032-6

    Article  Google Scholar 

Download references

Acknowledgments

This study is partially supported by technical service projects of the China Meteorological Administration, “Technical Research on Meteorological Risk Warning of Flash Floods” (Grant Number: 20142661168) and “Development and Transformation of a Multi-scale Meteorological Disaster Chain Forecasting Model in China” (Grant Number: 20151451484).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Long or Yang Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Tang, G., Long, D. et al. A cascading flash flood guidance system: development and application in Yunnan Province, China. Nat Hazards 84, 2071–2093 (2016). https://doi.org/10.1007/s11069-016-2535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2535-2

Keywords

Navigation