Natural Hazards

, Volume 84, Issue 2, pp 851–876 | Cite as

Reconstruction of a flash flood event through a multi-hazard approach: focus on the Rwenzori Mountains, Uganda

  • Liesbet Jacobs
  • Jan Maes
  • Kewan Mertens
  • John Sekajugo
  • Wim Thiery
  • Nicole van Lipzig
  • Jean Poesen
  • Matthieu Kervyn
  • Olivier Dewitte
Original Paper

Abstract

The increased use of complex and holistic modelling for multi-hazard analysis is in sharp contrast with a lacuna in hazard analysis in equatorial Africa. This study aims to increase understanding of multi-hazard events in poorly documented regions with low accessibility. We focus on the Nyamwamba catchment (107 km2) located in the Rwenzori Mountains (Uganda) where on May 1, 2013, a severe flash flood occurred. In this region, wildfires, earthquakes and landslides occur as well. Here we reconstruct the circumstances under which this flash flood event was triggered, characterize the different processes acting upon the catchment dynamics and estimate the damaging effects of the flash flood within the catchment. The combined occurrence of intense rainfall, a forest fire having burned 18 % of the catchment area and the occurrence of 29 landslides providing debris to the river system, induced a debris-rich and very destructive flash flood which caused several fatalities, the destruction of 70 buildings, several bridges, a hospital, a school, a tarmac road and several lifelines. Although the methodologies applied to estimate peak discharge, detect landslides and delineate wildfires are well established in their disciplines and sometimes limited in their precision, their combination is required to demonstrate the importance of the wildfire and landslides for the magnitude of this flood, unprecedented in decades but characterized by a low return period of the triggering rainfall event. This indicates that flash floods should not be considered as self-determined phenomena but as a result of several cascading and interacting hazard processes.

Keywords

Flash flood Landslide Forest fire Multi-hazard Equatorial Africa 

References

  1. ActAlliance (2013) Preliminary appeal UGANDA flash floods in Kasese—UGA131. http://reliefweb.int/sites/reliefweb.int/files/resources/UGA131Prel_KaseseFl.pdf. Accessed 22 Apr 2015
  2. Barnes H (1967) Roughness characteristics of natural channels. USGS Surv Water Supply Pap 219:8–209Google Scholar
  3. Binego A (2014) Causes of river Nyamwamba floods. http://www.newvision.co.ug/mobile/Detail.aspx?NewsID=651297&CatID=4. Accessed 15 Apr 2015
  4. Brunner GW, Hunt JH (1995) A comparison of the one-dimensional bridge hydraulic routines from: HEC-RAS, HEC-2 and WSPRO. US Army Corps of Engineers, Hydrologic Engineering Center. http://www.hec.usace.army.mil/publications/ResearchDocuments/RD-41.pdf. Accessed 14 June 2016
  5. Catane SG, Abon CC, Saturay RM et al (2012) Landslide-amplified flash floods—the June 2008 Panay Island flooding, Philippines. Geomorphology 169–170:55–63. doi:10.1016/j.geomorph.2012.04.008 CrossRefGoogle Scholar
  6. Cheng JD, Huang YC, Wu HL et al (2005) Hydrometeorological and landuse attributes of debris flows and debris floods during typhoon Toraji, July 29-30, 2001 in central Taiwan. J Hydrol 306:161–173. doi:10.1016/j.jhydrol.2004.09.007 CrossRefGoogle Scholar
  7. Chow V (1959) Open-channel hydraulics. McGraw-Hill Book Co., New-YorkGoogle Scholar
  8. Conedera M, Peter L, Marxer P et al (2003) Consequences of forest fires on the hydrogeological response of mountain catchments: a case study of the Riale Buffaga, Ticino, Switzerland. Earth Surf Process Landf 28:117–129. doi:10.1002/esp.425 CrossRefGoogle Scholar
  9. Coon WF (1998) Estimation of roughness coefficients for natural stream channels with vegetated banks. US Geol Surv Water Supply Pap 133:1–11Google Scholar
  10. Cui P, Zhou GGD, Zhu XH, Zhang JQ (2013) Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology 182:173–189. doi:10.1016/j.geomorph.2012.11.009 CrossRefGoogle Scholar
  11. DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New YorkGoogle Scholar
  12. Department of Lands and Survey Uganda (1972) Topographic Map of Kasese sheet 66/3 1:50,000Google Scholar
  13. Eggermont H, Van Damme K, Russell JM (2009) Rwenzori mountains (mountains of the moon): headwaters of the white Nile. In: Dumont HJ (ed) Nile Orig. Environ. Limnol. Hum. Use. Springer, Netherlands, pp 243–261. doi:10.1007/978-1-4020-9726-3_13 Google Scholar
  14. Fonstad M (2003) Spatial variation in the power of mountain streams in the Sangre de Cristo Mountains, New Mexico. Geomorphology 55:75–96. doi:10.1016/S0169-555X(03)00133-8 CrossRefGoogle Scholar
  15. Friedel MJ (2011) Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach. Environ Model Softw 26:1660–1674. doi:10.1016/j.envsoft.2011.07.001 CrossRefGoogle Scholar
  16. Gill JC, Malamud BD (2014) Reviewing and visualizing the interactions of natural hazards. Rev Geophys. doi:10.1002/2013RG000445 Google Scholar
  17. Goetz JN, Guthrie RH, Brenning A (2015) Forest harvesting is associated with increased landslide activity during an extreme rainstorm on Vancouver Island, Canada. Nat Hazards Earth Syst Sci 15:1311–1330. doi:10.5194/nhess-15-1311-2015 CrossRefGoogle Scholar
  18. Google Earth (2010) Nyamwamba Valley February 15 2014, 0.25°N, 30°E, Digital Globe 2015. http://www.earth.google.com. Accessed 4 Apr 2015
  19. Google Earth (2014a) Nyamwamba Valley February 15 2014, 0.25°N, 30°E, Digital Globe 2015. http://www.earth.google.com. Accessed 4 Apr 2015
  20. Google Earth (2014b) Nyamwamba Valley January 13 2014, 0.25°N, 30°E, Digital Globe 2015. http://www.earth.google.com. 4 Apr 2015
  21. GTK Consortium (2012) Geological map of Uganda 1:100,000 Sheet No. 65 KarambiGoogle Scholar
  22. Guns M, Vanacker V (2013) Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes. Environ Earth Sci 70:2941–2952. doi:10.1007/s12665-013-2352-9 CrossRefGoogle Scholar
  23. Herschy R (2009) Streamflow measurement, 3rd edn. Taylor and Francis, New YorkGoogle Scholar
  24. Hong Y, Adler R (2008) Predicting global landslide spatiotemporal distribution: integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Int J Sedim Res 23:249–257. doi:10.1016/S1001-6279(08)60022-0 CrossRefGoogle Scholar
  25. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. doi:10.1007/s10346-013-0436-y CrossRefGoogle Scholar
  26. Jacobs L, Dewitte O, Poesen J, Delvaux D, Thiery W, Kervyn M (2015) The Rwenzori Mountains, a landslide-prone region? Landslides. doi:10.1007/s10346-015-0582-5 Google Scholar
  27. Jacobs L, Dewitte O, Poesen J, Maes J, Mertens K, Sekajugo J, Kervyn M (2016) Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda. J Afr Earth Sci. doi:10.1016/j.jafrearsci.2016.05.013 Google Scholar
  28. Jarrett RD (1985) Determination of roughness coefficient in for streams in Colorado. Lakewood, ColeradoGoogle Scholar
  29. Jarrett RD (1989) Hydrologic and hydraulic research in mountain rivers. IAHS AISH Publ 190:107–117Google Scholar
  30. Jordan P, Covert SA (2009) Debris flows and floods following the 2003 wildfires in Southern British Columbia. Environ Eng Geosci 15:217–234. doi:10.2113/gseegeosci.15.4.217 CrossRefGoogle Scholar
  31. Kappes MS, Keiler M, von Elverfeldt K, Glade T (2012) Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64:1925–1958. doi:10.1007/s11069-012-0294-2 CrossRefGoogle Scholar
  32. Kasese District (2007) The Kasese district environment protection bill. Internal documentGoogle Scholar
  33. Kervyn M, Ernst GGJ, Harris A, Mbede E, Belton F, Jacobs P (2008) Thermal remote sensing of the low-intensity carbonatite volcanism of Oldoinyo Lengai, Tanzania. Int J Remote Sens 29:6467–6499CrossRefGoogle Scholar
  34. Kirby WH (1987) Linear error analysis of slope-area discharge determinations. J Hydr 96:125–138CrossRefGoogle Scholar
  35. Kizito BJ (2013) Kilembe floods. https://www.youtube.com/watch?v=4jTSBGRznBM. Accessed 16 Apr 2015
  36. Laads Web (2013) Laads web level 1 and atmosphere archive and distribution system https://ladsweb.nascom.nasa.gov/. Accessed 20 Feb 2015
  37. Langdale-Brown I, Osmaston HA, Wilson JG (1964) The vegetation of Uganda and its bearing on land use. Government of Uganda, EntebbeGoogle Scholar
  38. LIDEFO (2013) Lidefo News-Kasese floods. http://lidefo-uganda.blogspot.co.at/2013/05/v-behaviorurldefaultvmlo.html. Accessed 22 Apr 2015
  39. Lumbroso D, Gaume E (2012) Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J Hydrol 414–415:16–30. doi:10.1016/j.jhydrol.2011.08.048 CrossRefGoogle Scholar
  40. Maki Mateso JC, Dewitte O (2014) Towards an inventory of landslide processes and the elements at risk on the Rift flanks West of Lake Kivu (DRC). Geo Eco Trop 38:137–154Google Scholar
  41. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–711. doi:10.1002/esp.1064 CrossRefGoogle Scholar
  42. Mazzorana B, Comiti F, Fuchs S (2013) A structured approach to enhance flood hazard assessment in mountain streams. Nat Hazards. doi:10.1007/s11069-011-9811-y Google Scholar
  43. Mertens K, Jacobs L, Maes J, Kabaseke C, Maertens M, Poesen J, Kervyn M, Vranken L (2016) The direct impact of landslides on household income in tropical regions: a case study on the Rwenzori Mountains in Uganda. Sci Total Environ. doi:10.1016/j.scitotenv.2016.01.171 Google Scholar
  44. Moody JA, Martin DA (2001) Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the Western USA. Hydrol Process 15:2981–2993. doi:10.1002/hyp.386 CrossRefGoogle Scholar
  45. Murcott S (2012) Arsenic contamination in the world: an international sourcebook. IWA Publishing, LondonGoogle Scholar
  46. Niang I, Ruppel OC, Abdrabo MA et al (2014) Africa. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1199–1265Google Scholar
  47. NTV Uganda (2013) Online video report: Kasese floods situation: red-cross to ascertain number of missing persons. https://www.youtube.com/watch?v=kANu7O82iSM. Accessed 15 Mar 2015
  48. OECD (2012) Global modelling of natural hazard risks: enhancing existing capabilities to address new challenges. http://www.oecd.org/science/Final%20GRMI%20report.pdf. Accessed 12 Aug 2015
  49. Phillips JD (2002) Geomorphic impacts of flash flooding in a forested headwater basin. J Hydrol 269:236–250. doi:10.1016/S0022-1694(02)00280-9 CrossRefGoogle Scholar
  50. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys. doi:10.1002/2014RG000475 Google Scholar
  51. PreventionWeb (2009) Global distribution of multiple hazards mortality risk. http://preventionweb.net/go/10605. Accessed 8 Dec 2015
  52. Reliefweb (2013) Disaster relief emergency fund (DREF) Uganda: Kasese floods. http://reliefweb.int/sites/reliefweb.int/files/resources/Uganda%20Kasese%20Floods%20DREF%20operation%20MDRUG033.pdf. Accessed 4 May 2015
  53. Reliefweb (2014) Five perish as fresh floods hit Kasese. http://reliefweb.int/report/uganda/five-perish-fresh-floods-hit-kasese. Accessed 5 May 2015
  54. Shakesby RA, Doerr SH (2006) Wildfire as a hydrological and geomorphological agent. Earth Sci Rev 74:269–307. doi:10.1016/j.earscirev.2005.10.006 CrossRefGoogle Scholar
  55. Taylor R, Aggrey K (2004) Review of river discharge records and gauging stations in the Rwenzori Mountains of Uganda November 2004. http://www.geog.ucl.ac.uk/about-the-department/people/academic-staff/richard-taylor/research/files/rwenzori_river_stations_review_july_2004.pdf. Accessed 22 Mar 2015
  56. Thiery W, Davin E, Panits H-J et al (2015) The impact of the African Great Lakes on the regional climate. J Clim 28:4061–4085. doi:10.1175/JCLI-D-14-00565.1 CrossRefGoogle Scholar
  57. Tropical Rainfall Measurement Mission Project (TRMM) (2015) Daily TRMM and Others Rainfall Estimate (3B42 V7 derived), version 7: Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC). http://disc.sci.gsfc.nasa.gov/datacollection/TRMM_3B42_daily_V7.html. Accessed 14 Jan 2016
  58. UNDP (2013) Study of the flooding in Rwenzori Mountain for effective disaster risk management. Kampala. http://www.ug.undp.org/content/dam/uganda/docs/UNDPUg2014-Kasese%20Flooding%20Study2_FINAL.pdf. Accessed 4 May 2015
  59. UNESCO (1966) Earthquake reconnaissance mission, Uganda, the Toro earthquake of 20 March 1966. http://unesdoc.unesco.org/images/0000/000077/007799EB.pdf. Accessed 1 May 2015
  60. UNISDR (2014) Status report on implementation of Africa regional strategy and Hyogo framework for action, UNISDR AF. https://www.unisdr.org/we/inform/publications/35923. Accessed 20 April 2015
  61. UNISDR (2015) Sendai framework for disaster risk reduction 2015–2030. Presented at the third world conference on disaster risk reduction, Sendai, Miyagi, Japan. http://www.preventionweb.net/drr-framework/sendai-framework. Accessed 25 April 2015
  62. University of Hawai’i (2004) MODVOLC near-real-time thermal monitoring of global hot-spots. modis.higp.hawaii.edu. Accessed 10 Feb 2015
  63. USGS (2014) Shuttle radar topography mission, 1 Arc second scenes SRTM1N00E030V3, SRTM1N00E029V3, SRTM1S01E030V3, SRTM1S01E029V3, Unfilled Unfinished, Global Land Cover Facility, University of Maryland, College Park, Maryland, February 2000Google Scholar
  64. USGS (2015) USGS Earthquake hazards program: search earthquake archives. http://earthquake.usgs.gov/earthquakes/search/. Accessed 5 May 2016
  65. Wesche K, Miehe G, Kaeppeli M (2000) The significance of fire for afroalpine ericaceous vegetation. Mt Res Dev 20:340–347. doi:10.1659/0276-4741(2000)020[0340:TSOFFA]2.0.CO;2
  66. Wright R, Flynn L et al (2002) Automated volcanic eruption detection using MODIS. Remote Sens Environ 82:135–155CrossRefGoogle Scholar
  67. Wright R, Flynn LP, Garbeil H et al (2004) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 135:29–49. doi:10.1016/j.jvolgeores.2003.12.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Geography, Earth System ScienceVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Earth SciencesRoyal Museum for Central AfricaTervurenBelgium
  3. 3.Department of Earth and Environmental SciencesKU LeuvenLeuven-HeverleeBelgium
  4. 4.Department of Natural Resource EconomicsBusitema UniversityBusitemaUganda
  5. 5.Institute for Atmospheric and Climate Science, Land-Climate DynamicsETH ZürichZurichSwitzerland

Personalised recommendations