Skip to main content

Advertisement

Log in

Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The combined effects of midlatitude westerlies lying in the lower troposphere over the Kashmir Valley and low-pressure systems originated from the Bay of Bengal and Saurashtra and Kutch regions caused torrential rainfall, which in turn produced devastating floods in the valley, during the first week of September 2014. The total actual flooded area was ~488.2 km2 during September 10 to October 12, 2014. In this study, we utilized multispectral images of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensors along with the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) to derive the flood hazard and elements at risk. The linear combination of normalized flood depth, mean turbidity, and locational probability of flood parameters was taken to map the flood hazard. The flood risk, on the other hand, was computed as the product of flood hazard and vulnerability. Overall, the normalized difference vegetation index (NDVI) was reduced by ~50 % during postflood as compared with preflood image. Therefore, NDVI change in natural vegetation, cropped, and built-up areas was taken as proxy for vulnerability. Estimated land-use-specific hazard and risk mapping revealed that standing crops (rice and maize) were badly damaged in Bandipore, Baramula, Pulwama, and Bagdam Districts due to submergence and siltation by turbid flood water. Since natural vegetation stood above the flood level, it may have been affected least. Overall, Bandipore, Baramula, and Pulwama Districts showed relatively high flood hazard and risk to natural vegetation. Over the built-up area, Srinagar and Bagdam Districts were highly affected by turbid flood water. The estimated flood hazard and risk showed that Bandipore, Baramula, Bagdam, Pulwama, and Srinagar were the most severely affected districts in the valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Arnaud-Fassetta G, Astrade L, Bardou É, Corbonnois J, Delahaye D, Fort M, Gautier E, Jacob N, Peiry JL, Piégay H, Penven MJ (2009) Fluvial geomorphology and flood-risk management. Géomorphol Relif Process Environ 2009:109–128. doi:10.4000/geomorphologie.7554

    Article  Google Scholar 

  • Barker VR (1977) Stream channel response to floods with examples from central Texas. Geog Soc Am Bull 88:1057–1070

    Article  Google Scholar 

  • Bhatt CM, Srinivasa Rao G, Begum A, Manjusree P, Sharma SVSP, Prasanna L, Bhanumurthy V (2013) Satellite images for extraction of flood disaster footprints and assessing the disaster impact: Brahmaputra floods of June–July 2012, Assam, India. Curr Sci 104:1692–1700

    Google Scholar 

  • Bhuvan Indian Geo-Platform of ISRO (2015) Cloud cover image of Kashmir valley. http://bhuvan-noeda.nrsc.gov.in/disaster/disaster/disaster.php#. Accessed 10 Feb 2015

  • Brivio PA, Colombo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23:429–441. doi:10.1080/01431160010014729

    Article  Google Scholar 

  • Büchele B, Kreibich H, Kron A, Thieken A, Ihringer J, Oberle P, Merz B, Nestmann F (2006) Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks. Nat Hazards Earth Syst Sci 6:483–503. doi:10.5194/nhess-6-485-2006

    Article  Google Scholar 

  • Burbank DW, Johnson GD (1983) The late cenozoic chronologic and stratigraphic development of the Kashmir intermontane basin, Northwestern Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol 43:205–235. doi:10.1016/0031-0182(83)90012-3

    Article  Google Scholar 

  • Chandran RV, Ramakrishnan D, Chowdhary VM, Jeyaram A, Jha AM (2006) Flood mapping and analysis using air-borne synthetic aperture radar: a case study of July 2004 flood in Baghmati river basin, Bihar. Curr Sci 90:249–256

    Google Scholar 

  • Charlton R (2008) Fundamentals of fluvial geomorphology. Routledge, London

    Book  Google Scholar 

  • Cobby DM, Mason DC, Davenport IJ (2001) Image processing of airborne scanning laser altimetry data for improved river flood modelling. ISPRS J Photogramm Remote Sens 56:121–138. doi:10.1016/S0924-2716(01)00039-9

    Article  Google Scholar 

  • Cook A, Merwade V (2009) Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. J Hydrol 377:131–142. doi:10.1016/j.jhydrol.2009.08.015

    Article  Google Scholar 

  • Dar RA, Romshoo SA, Chandra R, Ahmad I (2014) Tectono-geomorphic study of the Karewa basin of Kashmir valley. J Asian Earth Sci 92:143–156. doi:10.1016/j.jseaes.2014.06.018

    Article  Google Scholar 

  • Dewan AM, Islam MM, Kumamoto T, Nishigaki M (2007) Evaluating flood hazard for land-use planning in greater Dhaka of Bangladesh using remote sensing and GIS techniques. Water Resour Manag 21:1601–1612. doi:10.1007/s11269-006-9116-1

    Article  Google Scholar 

  • Dhar ON, Nandargi S (2003) Hydrometeorological aspects of floods in India. Nat Hazards 28:1–33

    Article  Google Scholar 

  • Dhar ON, Nandargi S (2005) Distribution of precipitation over the Himalayas. J Met 30:83–91

    Google Scholar 

  • Dutta D, Herath S, Musiake K (2003) A mathematical model for flood loss estimation. J Hydrol 277:24–49. doi:10.1016/S0022-1694(03)00084-2

    Article  Google Scholar 

  • Earth System Science Organization (ESSO), Ministry of Earth Sciences (MoES) (2014) 2014 Southwest monsoon end season report. http://www.imdpune.gov.in/endofseasonreport2014.pdf. Accessed 10 Feb 2015

  • Erskine WD, Livingstone EA (1999) In-channel benches: the role of floods in their formation and destruction on bedrock confined rivers. In: Miller AJ, Gupta A (eds) Varieties of fluvial form. Wiley, New York, pp 445–475

    Google Scholar 

  • Exelis (2015a) FLAASH background. http://www.exelisvis.com/docs/backgroundflaash.html. Accessed 10 Feb 2015

  • Exelis (2015b) Mulispectral sensors and FLAASH. http://www.exelisvis.com/docs/FLAASH.html#Select7. Accessed 10 Feb 2015

  • Exelis (2015c) FLAASH advanced options. http://www.exelisvis.com/docs/FLAASHAdvancedOptions.html. Accessed 10 Feb 2015

  • Frazier P, Page K, Louis J, Briggs S, Robertson AI (2003) Relating wetland inundation to river flow using Landsat TM data. Int J Remote Sens 24:3755–3770. doi:10.1080/0143116021000023916

    Article  Google Scholar 

  • Ganjoo RK (2014) The vale of Kashmir: landform evolution and processes. In: Kale VS (ed) Landscapes and landforms of India. Springer, Dordrecht, pp 125–133

    Chapter  Google Scholar 

  • Graf WL (2000) Locational probability for a dammed, urbanizing stream: salt River, Arizona, USA. Environ Manage 25:321–335. doi:10.1007/s002679910025

    Article  Google Scholar 

  • Guo Y, Zeng F (2012) Atmospheric correction comparison of Spot-5 Image based on model Flaash and model Quac. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci 39(B7):7–11. doi:10.5194/isprsarchives-XXXIX-B7-7-2012

    Article  Google Scholar 

  • Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35:233–245. doi:10.1080/02508061003664419

    Article  Google Scholar 

  • Haase D, Frotscher K (2005) Topography data harmonisation and uncertainties applying SRTM, laser scanning and cartographic elevation models. Adv Geosci 5:65–73. doi:10.5194/adgeo-5-65-2005

    Article  Google Scholar 

  • Ho LTK, Umitsu M, Yamaguchi Y (2010) Flood hazard mapping by satellite images and SRTM DEM in the Vu Gia-Thu Bon alluvial plain, central Vietnam. Arch Photogramm Remote Sens 38:275–279

    Google Scholar 

  • Jain SK, Goel MK (2002) Assessing the vulnerability to soil erosion of the Ukai Dam catchments using remote sensing and GIS. Hydrol Sci J 47:31–40. doi:10.1080/02626660209492905

    Article  Google Scholar 

  • Jain SK, Saraf AK, Goswami A, Ahmad T (2006) Flood inundation mapping using NOAA AVHRR data. Water Resour Manag 20:949–959. doi:10.1007/s11269-006-9016-4

    Article  Google Scholar 

  • Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Pearson Prentice Hall, New Jersey

    Google Scholar 

  • Kale VS (2003) Geomorphic effects of monsoon floods on Indian rivers. Nat Hazards 28:65–84. doi:10.1023/A:1021121815395

    Article  Google Scholar 

  • Kumar R, Jain V, Babu GP, Sinha R (2014) Connectivity structure of the Kosi megafan and role of rail-road transport network. Geomorphology 227:73–86

    Article  Google Scholar 

  • LeFavour G, Alsdorf D (2005) Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model. Geophys Res Lett 32:L17404. doi:10.1029/2005GL023836

    Article  Google Scholar 

  • Lillesand TH, Kiefer RW, Chipman JW (2009) Remote sensing and image interpretation, 5th edn. Wiley, New Delhi

    Google Scholar 

  • Mani A (1981) The climate of the Himalayas. In: Lal JS, Moddie AD (eds) The Himalayas-aspects of change. Oxford University Press, Oxford

    Google Scholar 

  • Matgen P, Schumann G, Henry JB, Hoffmann L, Pfister L (2007) Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int J Appl Earth Obs Geoinf 9:247–263. doi:10.1016/j.jag.2006.03.003

    Article  Google Scholar 

  • McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432

    Article  Google Scholar 

  • Merz B, Thieken A, Gocht M (2007) Flood risk mapping at the local scale: concepts and challenges. In: Flood risk management in Europe, pp 231–251

  • Nandargi S, Dhar ON (2011) Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrol Sci J 56:930–945. doi:10.1080/02626667.2011.595373

    Article  Google Scholar 

  • NRSC (2005–2006) Geomorphology and Lineament NGLM, Landform, 50 K, Jammu and Kashmir. http://bhuvan.nrsc.gov.in/gis/thematic/index.php. Accessed 10 Feb 2015

  • Pandey AC, Singh SK, Nathawat MS (2012) Analysing the impact of anthropogenic activities on waterlogging dynamics in Indo-Gangetic plains, northern Bihar, India. Int J Remote Sens 33:135–149

    Article  Google Scholar 

  • Patel DP, Dholakia MB (2010) Feasible structural and non-structural measures to minimise effect of flood in Lower Tapi Basin. WSEAS Trans Fluid Mech 3:104–121

    Google Scholar 

  • Patel DP, Dholakia MB, Naresh N, Srivastava PK (2012) Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi basin. J Indian Soc Remote Sens 40:299–312. doi:10.1007/s12524-011-0147-6

    Article  Google Scholar 

  • Planning Commission (2011) Report of working group on food management and region specific issues for XII plan. Govt of India, New Delhi

    Google Scholar 

  • Raclot D (2006) Remote sensing of water levels on floodplains: a spatial approach guided by hydraulic functioning. Int J Remote Sens 27:2553–2574. doi:10.1080/01431160600554397

    Article  Google Scholar 

  • Ramamoorthi AS, Thiruvengadachari S, Kulkarni AV (1991) IRS-1A Applications in hydrology and water resources. Curr Sci 61:180–188

    Google Scholar 

  • Rodríguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hensley S, (2005) An assessment of the SRTM topographic products. In: Technical report JPL D-31639. Jet Propulsion Laboratory, Pasadena, CA. http://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf. Accessed 20 Dec 2015

  • Sanders BF (2007) Evaluation of on-line DEMs for flood inundation modeling. Adv Water Resour 30:1831–1843. doi:10.1016/j.advwatres.2007.02.005

    Article  Google Scholar 

  • Sanyal J, Lu XX (2004) Application of remote sensing in flood management with special reference to monsoon Asia: a review. Nat Hazards 33:283–301. doi:10.1023/B:NHAZ.0000037035.65105.95

    Article  Google Scholar 

  • Sarma D (2013) Rural risk assessment due to flooding and river bank erosion in Majuli, Assam, India. Unpublished PhD thesis, University of Twente, Enschede, The Netherlands and IIRS, Dehradun

  • Schumann G, Matgen P, Cutler MEJ, Black A, Hoffmann L, Pfister L (2008) Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS J Photogramm Remote Sens 63:283–296. doi:10.1016/j.isprsjprs.2007.09.004

    Article  Google Scholar 

  • Shah A (2015) Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya by Gowhar et al., 2015. Nat Hazards 77:2139–2143

    Article  Google Scholar 

  • Sikka DR (1999) Influence of Himalayas and snow cover on the weather and climate of India—a review. In: Dash SK, Bahadur J (eds) The Himalayan environment. New Age, New Delhi, pp 37–52

    Google Scholar 

  • Singh RL (1971) India: a regional geography. NGSI, Varanasi, pp 347–389

    Google Scholar 

  • Sivasami KS (2002) Environmental effect due to floods and reservoirs. In: Subramanian V (ed) Environmental hazard in South Asia. Capital, New Delhi, pp 65–82

    Google Scholar 

  • Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process 11:1427–1439. doi:10.1002/(sici)1099-1085(199708)11:10<1427:aid-hyp473>3.0.co;2-s

    Article  Google Scholar 

  • Srivastava PK, Mukherjee S, Gupta M, Singh S (2011) Characterizing monsoonal variation on water quality index of river Mahi in India using geographical information system. Water Qual Expos Health 2:193–203

    Article  Google Scholar 

  • Stancalie G, Alecu C, Catana S (2000) Flood hazard assessment and monitoring using geographical information and remotely sensed data. Arch Photogramm Remote Sens 39:1472–1479

    Google Scholar 

  • Tali MPA (2011) Land use/land cover change and its impact on flood occurrence: a case study of upper Jhelum floodplain. Dissertation, University of Kashmir

  • The Yale Center for Earth Observation (2013) Filling gaps in Landsat ETM images. http://www.yale.edu/ceo/Documentation/Landsat_ETM_Gap_Fill.pdf. Accessed 10 Feb 2015

  • Thomas RF, Kingsford RT, Lu Y, Hunter SJ (2011) Landsat mapping of annual inundation (1979–2006) of the Macquarie Marshes in semi-arid Australia. Int J Remote Sens 32:4545–4569. doi:10.1080/01431161.2010.489064

    Article  Google Scholar 

  • Todini E (1999) An operational decision support system for flood risk mapping, forecasting and management. Urban Water 1:131–143. doi:10.1016/S1462-0758(00)00010-8

    Article  Google Scholar 

  • Tunstall S, Johnson C, Penning-Rowsell E (2004) Flood hazard management in England and Wales: from land drainage to flood risk management, pp 19–21

  • USGS (2015) Landsat 8 (L8) data users handbook, version 1.0. http://www.greenpolicy360.net/mw/images/Landsat8DataUsersHandbook.pdf. Accessed 20 Dec 2015

  • van Westen CJ (2000) Remote sensing for natural disaster management. Arch Photogramm Remote Sens 33:1609–1617

    Article  Google Scholar 

  • Vörösmarty CJ, Fekete B, Tucker BA (1998) River discharge database, version 1.1 (RivDIS 1.0 supplement). Available through the Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH (USA)

  • Wang Y (2004) Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. Int J Remote Sens 25:959–974. doi:10.1080/0143116031000150022

    Article  Google Scholar 

  • Wang Y, Koopmans BN, Pohl C (1995) The 1995 flood in the Netherlands monitored from space-a multi-sensor approach. Int J Remote Sens 16:2735–2739

    Article  Google Scholar 

  • Wang Y, Colby JD, Mulcahy KA (2002) An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. Int J Remote Sens 23:3681–3696. doi:10.1080/01431160110114484

    Article  Google Scholar 

  • Werner MGF (2001) Impact of grid size in GIS based flood extent mapping using a 1D flow model. Phys Chem Earth Part B Hydrol Ocean Atmos 26:517–522. doi:10.1016/S1464-1909(01)00043-0

    Article  Google Scholar 

  • Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27:3025–3033. doi:10.1080/01431160600589179

    Article  Google Scholar 

  • Yevyevich V (1992) Floods and Society. In: Ross G, Harmancioglu N, Yevyevich V (eds) Coping with floods. NATOASI series. Kluwer, Dordrecht, pp 3–9

    Google Scholar 

Download references

Acknowledgments

We are very grateful to USGS for disseminating the Landsat 8 and ETM+ images absolutely free of cost through the Earth Explorer web portal. We also extend our gratitude to Agro-met Division, a sister organization of IMD, for providing the rainfall and crop information in the study area. We are grateful to the Government of Nepal for providing river discharge data through hydrological records of Nepal, stream flow summary (1998). We are also grateful to the anonymous reviewers for their illuminating and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Acharya, P. Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach. Nat Hazards 84, 437–464 (2016). https://doi.org/10.1007/s11069-016-2428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2428-4

Keywords

Navigation