Natural Hazards

, Volume 84, Issue 1, pp 249–269 | Cite as

Seismic vulnerability assessment at urban scale for two typical Swiss cities using Risk-UE methodology

  • P. LestuzziEmail author
  • S. Podestà
  • C. Luchini
  • A. Garofano
  • D. Kazantzidou-Firtinidou
  • C. Bozzano
  • P. Bischof
  • A. Haffter
  • J.-D. Rouiller
Original Paper


This paper contains a seismic assessment at urban scale of the cities of Sion and Martigny in Switzerland. These two cities have been identified for the present research based on their importance regarding size and the characteristics of the building stock for which information was available. Moreover, microzonation investigations are available for both cities. This results in a more accurate characterization of local expected ground shaking, which is expressed through specific response spectra. Sion and Martigny represent, respectively, the capital and second largest city of the canton of Valais. This region is characterized by the highest seismicity within Switzerland. The paper focuses on the assessment using Risk-UE methodology, namely the empirical method LM1 and the mechanical method LM2. The obtained results are compared in order to assess the related accuracy. Firstly, buildings of the two cities were surveyed in order to collect main structural characteristics in a database. Building stock is typical of that region and can be found similar to many other medium-sized Swiss cities. Around half of the buildings are unreinforced masonry buildings, while several others are reinforced concrete buildings with shear walls. Results show the most vulnerable part of the cities regarding earthquake. There are significant differences in global results between LM1 and LM2 methods. The mechanical LM2 method is more pessimistic since it predicts damage grades of about one degree higher than LM1 method. However, the main drawback of the empirical LM1 method is that an a priori determination of an adequate value of the macroseismic intensity is required. Nevertheless, LM2 method may lead to a global overestimation of damage prediction.


Risk-UE method Seismic vulnerability assessment Existing structures Damage grade Urban seismic risk Microzonation 



The investigations were funded by the canton of Valais, the cities of Sion and Martigny and the Centre de Recherche sur l’Environnement Alpin (CREALP). Yvan Vollet from Sittel SA engineering company in Sion provides the maps of the damage distributions. Swiss Seismological Service provides the map of earthquake hazard in Switzerland and the map of intensity increments for Sion. Authors are grateful to anonymous reviewers for the detailed reviews and comments that significantly improved the quality of the paper.


  1. Badoux M (2001) Vulnérabilité sismique du bâti existant suisse. IAS Bulletin technique de la Suisse Romande—Société suisse des Ingénieurs et des Architectes 12:222–227 (in French)Google Scholar
  2. Barbat AH, Carreño ML, Pujades LG, Lantada N, Cardona OD, Marulanda MC (2010) Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng 6:17–38CrossRefGoogle Scholar
  3. Benedetti D, Petrini V (1984) On seismic vulnerability of masonry buildings: proposal of an evaluation procedure. L’Industria delle Costruzioni 18:66–78 (in Italian)Google Scholar
  4. Brennet G, Peter K, Badoux M (2001) Vulnérabilité et risque sismique de la ville d’Aigle. 1ère partie: Inventaire sismique et vulnérabilité du bâti. Technical report, Etablissement Cantonal Vaudois d’Assurance, Ecole Polytechnique Fédérale de Lausanne, 2001 (in French)Google Scholar
  5. Brennet G, Peter K, Badoux M (2002) Inventaire sismique de la ville d’Aigle, Publication IS-BETON, Ecole Polytechnique Fédérale de Lausanne (in French)Google Scholar
  6. Cattari S, Curti E, Giovinazzi S, Lagomarsino S, Parodi S, Penna A (2004) A mechanical model for the vulnerability assessment and damage scenario of masonry buildings at urban scale. In: Proceedings of 11th Italian conference on earthquake engineering. GenoaGoogle Scholar
  7. Cauzzi C, Edwards B, Fäh D, Clinton J, Wiemer S, Kastli P, Cua G, Giardini D (2015) New predictive equations and site amplification estimates for the next-generation Swiss ShakeMaps. Geophys J Int 200:421–438CrossRefGoogle Scholar
  8. Centre de Recherche sur l’Environnement Alpin (CREALP).
  9. Dolce M, Masi A, Marino M, Vona M (2003) Earthquake damage scenarios of the building stock of Potenza (Southern Italy) including site effects. Bull Earthq Eng 1:115–140CrossRefGoogle Scholar
  10. Ergunay O, Gulkan P (1991). Seismic risk reduction and disaster management: national report of Turkey. In: Proceedings of workshop on seismic risk reduction and disaster management, RomaGoogle Scholar
  11. Eurocode 8 (2004) Design of structures for earthquake resistance—Part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, BrusselsGoogle Scholar
  12. Faenza L, Michelini A (2010) Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap. Geophys J Int 180:1138–1152CrossRefGoogle Scholar
  13. Fäh D, Giardini D, Kästli P, Deichmann N, Gisler M, Schwarz-Zanetti G, Alvarez-Rubio S, Sellami S, Edwards B, Allmann B, Bethmann, F, Wössner J, Gassner-Stamm G, Fritsche S, Eberhard D (2011) ECOS-09 Earthquake catalogue of Switzerland release 2011. Report and Database. Public catalogue, 17.4.2011. Swiss Seismological Service ETH Zürich, Report SED/RISK/R/001/20110417Google Scholar
  14. Fäh D et al (2012) Coupled seismogenic geohazards in Alpine regions. Bolettino di Geofisica Teorica ed Applicata 53(4):485–508Google Scholar
  15. FEMA 178 (1997) NEHRP handbook for the seismic evaluation of existing buildings. Federal Emergency Management Agency, WashingtonGoogle Scholar
  16. Freeman SA (1998) The capacity spectrum method. In: Proceedings of 11th European conference on earthquake engineering, ParisGoogle Scholar
  17. Fritsche S, Fäh D (2009) The 1946 magnitude 6.1 earthquake in the Valais: site-effects as contributor to the damage. Swiss J Geosci 102(3):423–439CrossRefGoogle Scholar
  18. Giovinazzi S, Lagomarsino S (2004) A macroseismic model for the vulnerability assessment of buildings. In: Proceedings of 13th world conference on earthquake engineering. Vancouver, paper 896Google Scholar
  19. GNDT (1993) Rischio sismico di edifici pubblici—Parte I: aspetti metodologici. Centro Servizi Quasco, Bologna, p 425Google Scholar
  20. Greifenhagen C, Lestuzzi P (2005) Static-cyclic tests on low reinforced concrete shear walls. Eng Struct 27(11):1703–1712CrossRefGoogle Scholar
  21. Grünthal G, Musson RMW, Schwarz J, Stucchi M (2001) European Macroseismic Scale 1998, EMS-98. Cahiers du Centre Européen de Géodynamique et de Séismologie, Volume 19. ISBN 2-9599804-3-3. Conseil de l’Europe, LuxembourgGoogle Scholar
  22. Guéguen P, Michel C, Le Corre L (2007) A simplified approach for vulnerability assessment in moderate-to-low seismic hazard regions: application to Grenoble (France). Bull Earthq Eng 5(3):467–490CrossRefGoogle Scholar
  23. Hannewald P, Michel C, Lestuzzi P, Crowley H, Fäh D (2016) Development of bilinear capacity curves for school buildings in Basel (Switzerland) for earthquake scenarios. In PreparationGoogle Scholar
  24. HAZUS (1999) Earthquake loss estimation methodology—technical and user manuals, vol 1–3. Federal Emergency Management Agency (FEMA), National Institute of Building Sciences, WashingtonGoogle Scholar
  25. Kazantzidou-Firtinidou D, Bozzano C, Rouiller J-D, Lestuzzi P, Podestà S, Luchini C (2015) Evaluation expéditive de la vulnérabilité sismique du bâti des agglomérations de Sion et Martigny. Projet SEISMOVAL-Risk-UE-UniGEN. Rapport final. CREALP (in French)Google Scholar
  26. Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4:415–443CrossRefGoogle Scholar
  27. Lang K, Bachmann H (2003) On the seismic vulnerability of existing unreinforced masonry buildings. J Earthq Eng 7(3):407–426Google Scholar
  28. Michel C, Guéguen P, Causse M (2012) Seismic vulnerability assessment to slight damage based on experimental modal parameters. Earthq Eng Struct Dyn 41(1):81–98CrossRefGoogle Scholar
  29. Michel C, Lestuzzi P, Lacave C (2014) Simplified non-linear seismic displacement demand prediction for low period structures. Bull Earthq Eng 12(4):1563–1581CrossRefGoogle Scholar
  30. Milutinovic ZM, Trendafiloski GS (2003) An advanced approach for earthquake risk scenarios with applications to different European towns. WP-4: vulnerability of current buildings. Risk-UE Project, European CommissionGoogle Scholar
  31. Mouroux P, Le Brun B (2006) Presentation of RISK-UE Project. Bull Earthq Eng 4:323–339CrossRefGoogle Scholar
  32. Mouroux P, Bertrand E, Bour M, Le Brun B, Depinois S, Masure P, RISK-UE team (2004) The European RISK-UE Project: an advanced approach to earthquake risk scenarios. In: 13th World Conference on earthquake engineering (WCEE), Vancouver, 1–6 Aug 2004, Paper No. 3329Google Scholar
  33. Oliveira CS (2003) Seismic vulnerability of historical constructions: a contribution. Bull Earthq Eng 1(1):37–82CrossRefGoogle Scholar
  34. Onur T, Ventura CE, Liam Finn WD (2005) Regional seismic risk in British Columbia—damage and loss distribution in Victoria and Vancouver. Can J Civ Eng 32:361–371CrossRefGoogle Scholar
  35. Otani S (2000) Seismic vulnerability assessment methods for buildings in Japan. Earthq Eng Eng Seismol 2(2):47–56Google Scholar
  36. Risk-UE (2003) An advanced approach to earthquake risk scenarios with applications to different European towns. Projet européen, EVK4-CT-2000-00014Google Scholar
  37. Roca A, Goula X, Susagna T, Chávez J, González M, Reinoso E (2006) A simplified method for vulnerability assessment of dwelling buildings and estimation of the damage scenarios in Catalonia (Spain). Bull Earthq Eng 4(2):141–158CrossRefGoogle Scholar
  38. Schwarz J, Beinersdorf S, Swain T, Leipold M, Langhammer T, Kaufmann C (2007) Wirklichkeitnahe Erdbebenverletzbarkeits- und Verschiebungfunktionen von Mauerwerksgebaüden Teilprojekt 3: Auswertung der Schadendaten des Albstadt-Bebens 1978 und Übertragung auf charakteristische Mauerwerksgebäude in der Schweiz. Präventionstiftung der kantonalen Gebäudeversicherungen, Weimar (in German)Google Scholar
  39. Seismocare (1998) Seismocare computed aided reduction of seismic risk with application to existing cities, town planning and construction—directions to fill in the vulnerability form GNDT levels 1 and 2, European project Environment and Climate, 1994–1998, ENV4-CT97-0588Google Scholar
  40. SIA 261 (2003) Actions on structures. Swiss Society of Engineers and Architects (SIA), ZurichGoogle Scholar
  41. Swiss Seismological Service (SED) at ETH Zurich (2015). Swiss National Probabilistic Seismic Hazard Assessment 2015. Zurich: Federal Institute of Technology. Acsessed 23 May 2016
  42. Veludo I, Teves-Costa P, Bard P (2013) Damage seismic scenarios for Angra do Heroísmo, Azores (Portugal). Bull Earthq Eng 11:423–453CrossRefGoogle Scholar
  43. Ventura CE, Liam Finn WD, Onur T, Blanquera A, Rezai M (2005) Regional seismic risk in British Columbia—classification of buildings and development of damage probability functions. Can J Civ Eng 32:372–387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • P. Lestuzzi
    • 1
    Email author
  • S. Podestà
    • 2
  • C. Luchini
    • 2
  • A. Garofano
    • 1
  • D. Kazantzidou-Firtinidou
    • 3
  • C. Bozzano
    • 3
  • P. Bischof
    • 1
  • A. Haffter
    • 1
  • J.-D. Rouiller
    • 3
  1. 1.Ecole Polytechnique Fédérale de LausanneEPFL-ENAC-IIC-IMACLausanneSwitzerland
  2. 2.DICCAUniversity of GenoaGenoaItaly
  3. 3.CREALPSionSwitzerland

Personalised recommendations